RESUMO
BACKGROUND: The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS: In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the airâliquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (ß-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS: In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION: Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Assuntos
Aerossóis , Técnicas de Cocultura , Células Epiteliais , Material Particulado , Transdução de Sinais , Transcriptoma , Humanos , Material Particulado/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células A549 , Poluentes Atmosféricos/toxicidade , Metabolômica , Metaboloma/efeitos dos fármacosRESUMO
Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Humanos , Compostos Policíclicos/análise , Fuligem/análise , Fuligem/química , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pulmão , Oxigênio/análise , Metaboloma , Poluentes Atmosféricos/análise , Emissões de Veículos/análiseRESUMO
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that contributes to the global rise in liver-related morbidity and mortality. Wood tar (WT) aerosols are a significant fraction of carbonaceous aerosol originating from biomass smoldering, contributing to air pollution particles smaller than 2.5 mm (PM2.5). Mechanistic biological associations exist between exposure to PM2.5 and increased NAFLD phenotypes in both cell and animal models. Therefore, this study examines whether an existing NAFLD-like condition can enhance the biological susceptibility of liver cells exposed to air pollution in the form of WT material. Liver cells were incubated with lauric or oleic acid (LA, OA, respectively) for 24 h to accumulate lipids and served as an in vitro hepatic steatosis model. When exposed to 0.02 or 0.2 g/L water-soluble WT aerosols, both steatosis model cells showed increased cell death compared to the control cells (blank-treated cells with or without pre-incubation with LA or OA) or compared to WT-treated cells without pre-incubation with LA or OA. Furthermore, alterations in oxidative status included variations in reactive oxygen species (ROS) levels, elevated levels of lipid peroxidation adducts, and decreased expression of antioxidant genes associated with the NRF2 transcription factor. In addition, steatosis model cells exposed to WT had a higher degree of DNA damage than the control cells (blank-treated cells with or without pre-incubation with LA or OA). These results support a possible systemic effect through the direct inflammatory and oxidative stress response following exposure to water-soluble WT on liver cells, especially those predisposed to fatty liver. Furthermore, the liver steatosis model can be influenced by the type of fatty acid used; increased adverse effects of WT on metabolic dysregulation were observed in the LA model to a higher extent compared to the OA model.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Biomassa , Fígado/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Material Particulado/metabolismo , Aerossóis , Água/metabolismoRESUMO
Anisole (methoxybenzene) represents an important marker compound of lignin pyrolysis and a starting material for many chemical products. In this study, secondary organic aerosols (SOA) formed by anisole via various atmospheric processes, including homogeneous photooxidation with varying levels of OH⢠and NOx and subsequent heterogeneous NO3⢠dark reactions, were investigated. The yields of anisole SOA, particle-bound organoperoxides, particle-induced oxidative potential (OP), and cytotoxicity were characterized in view of the atmospheric fate of the anisole precursor. Anisole SOA yields ranged between 0.12 and 0.35, depending on the reaction pathways and aging degrees. Chemical analysis of the SOA suggests that cleavage of the benzene ring is the main reaction channel in the photooxidation of anisole to produce low-volatility, highly oxygenated small molecules. Fresh anisole SOA from OH⢠photooxidation are more light-absorbing and have higher OP and organoperoxide content. The high correlation between SOA OP and organoperoxide content decreases exponentially with the degree of OH⢠aging. However, the contribution of organoperoxides to OP is minor (<4%), suggesting that other, non-peroxide oxidizers play a central role in anisole SOA OP. The particle-induced OP and particulate organoperoxides yield both reach a maximum value after â¼2 days' of photooxidation, implicating the potential long impact of anisole during atmospheric transport. NOx-involved photooxidation and nighttime NO3⢠reactions facilitate organic nitrate formation and enhance particle light absorption. High NOx levels suppress anisole SOA formation and organoperoxides yield in photooxidation, with decreased aerosol OP and cellular oxidative stress. In contrast, nighttime aging significantly increases the SOA toxicity and reactive oxygen species (ROS) generation in lung cells. These dynamic properties and the toxicity of anisole SOA advocate consideration of the complicated and consecutive aging processes in depicting the fate of VOCs and assessing the related effects in the atmosphere.
Assuntos
Poluentes Atmosféricos , Nitratos , Aerossóis/análise , Poluentes Atmosféricos/análise , Anisóis/análise , Anisóis/toxicidade , Benzeno/análise , Lignina/análise , Nitratos/química , Oxirredução , Espécies Reativas de Oxigênio/análiseRESUMO
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.
RESUMO
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
Assuntos
Tratamento Farmacológico da COVID-19 , Gelatina , Aerossóis/química , Humanos , Pulmão , SARS-CoV-2RESUMO
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Monitoramento Ambiental , Substâncias Húmicas/análise , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Estresse Oxidativo , Material Particulado/análise , PeróxidosRESUMO
BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.
Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Idoso , Envelhecimento , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Pulmão/metabolismo , Material Particulado/análiseRESUMO
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5.
RESUMO
Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 µg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.
Assuntos
Poluentes Atmosféricos , Gases , Aerossóis/análise , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biomassa , Clima , Humanos , FuligemRESUMO
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alcatrões/farmacologia , Madeira/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Biomassa , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solubilidade , Alcatrões/química , Alcatrões/isolamento & purificação , Células Tumorais Cultivadas , Água/químicaRESUMO
Particulate matter (PM), an important component of air pollution, induces significant adverse health effects. Many of the observed health effects caused by inhaled PM are associated with oxidative stress and inflammation. This association has been linked in particular to the particles' chemical components, especially the inorganic/metal and the organic/polycyclic aromatic hydrocarbon (PAH) fractions, and their ability to generate reactive oxygen species in biological systems. The transcription factor NF-E2 nuclear factor erythroid-related factor 2 (Nrf2) is activated by redox imbalance and regulates the expression of phase II detoxifying enzymes. Nrf2 plays a key role in preventing PM-induced toxicity by protecting against oxidative damage and inflammation. This review focuses on specific PM fractions, particularly the dissolved metals and PAH fractions, and their roles in inducing oxidative stress and inflammation in cell and animal models with respect to Nrf2 and mitochondria.
Assuntos
Metais Pesados/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Humanos , Inflamação/metabolismo , Metais Pesados/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismoRESUMO
BACKGROUND: Carbonaceous aerosols emitted from indoor and outdoor biomass burning are major risk factors contributing to the global burden of disease. Wood tar aerosols, namely, tar ball particles, compose a substantial fraction of carbonaceous emissions, especially from biomass smoldering. However, their health-related impacts and toxicity are still not well known. This study investigated the toxicity of the water-soluble fraction of pyrolyzed wood tar aerosols in exposed mice and lung epithelial cells. RESULTS: Mice exposed to water-soluble wood tar aerosols showed increased inflammatory and oxidative stress responses. Bronchial epithelial cells exposed to the same water-soluble wood tar aerosols showed increased cell death with apoptotic characteristics. Alterations in oxidative status, including changes in reactive oxygen species (ROS) levels and reductions in the expression of antioxidant genes related to the transcription factor Nrf2, were observed and were confirmed by increased levels of MDA, a lipid peroxidation adduct. Damage to mitochondria was observed as an early event responsible for the aforementioned changes. CONCLUSIONS: The toxicity and health effect-related mechanisms of water-soluble wood tar were investigated for the first time in the context of biomass burning. Wood tar particles may account for major responses such as cell death, oxidative stress, supression of protection mechnaisms and mitochondrial damaged cause by expsoure to biomass burning aerosols.
Assuntos
Poluentes Atmosféricos/toxicidade , Carbono/toxicidade , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Madeira/química , Aerossóis , Animais , Apoptose/efeitos dos fármacos , Biomassa , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismoRESUMO
It has been hypothesized that the cytotoxicity of secondary organic aerosols (SOA) is mediated through the formation of reactive oxygen species (ROS) in the exposed cells. Here, lung epithelial cells (A549) residing at the air-liquid interface were exposed to proxies of anthropogenic and biogenic SOA that were photochemically aged under varying nitrogen oxide (NOx) concentrations in an oxidation flow reactor. The total organic peroxides and ROS radical content in the SOA were quantified by the iodometric spectrophotometric method and by continuous-wave electron paramagnetic resonance. The effect of the exposure was evaluated by measuring cell viability and cellular ROS production following the exposure. The results demonstrate that SOA that aged in the absence of NOx contained more ROS than fresh SOA and were more toxic toward the cells, while varying NOx conditions had no significant influence on levels of the ROS content in fresh SOA and their toxicity. Analysis of ROS in the exposed cells using flow cytometry showed a similar trend with the total ROS content in the SOA. This study provides a first and direct observation of such association.
Assuntos
Poluentes Atmosféricos , Aerossóis , Oxirredução , Estresse Oxidativo , Espécies Reativas de OxigênioRESUMO
Consumer-level 3D printers emit ultrafine and fine particles, though little is known about their chemical composition or potential toxicity. We report chemical characteristics of the particles in comparison to raw filaments and assessments of particle toxicity. Particles emitted from polylactic acid (PLA) appeared to be largely composed of the bulk filament material with mass spectra similar to the PLA monomer spectra. Acrylonitrile butadiene styrene (ABS), extruded at a higher temperature than PLA, emitted vastly more particles and their composition differed from that of the bulk filament, suggesting that trace additives may control particle formation. In vitro cellular assays and in vivo mice exposure all showed toxic responses when exposed to PLA and ABS-emitted particles, where PLA-emitted particles elicited higher response levels than ABS-emitted particles at comparable mass doses. A chemical assay widely used in ambient air-quality studies showed that particles from various filament materials had comparable particle oxidative potentials, slightly lower than those of ambient particulate matter (PM2.5). However, particle emissions from ABS filaments are likely more detrimental when considering overall exposure due to much higher emissions. Our results suggest that 3D printer particle emissions are not benign and exposures should be minimized.
Assuntos
Acrilonitrila , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Animais , Camundongos , Tamanho da Partícula , Material Particulado , Impressão Tridimensional , EstirenoRESUMO
Nowadays, knowledge regarding component-specific inflammatory effect of fine particulate matter (PM2.5) is limited. In this study, an omics approach based on time-of-flight mass spectrometry was established to identify the key hydrophobic components of PM2.5 associated with pro-inflammatory cytokines released by macrophages after in vitro exposure. Of 764 compounds, 62 components were robustly screened with firmly identified 37 specific chemicals. In addition to polycyclic aromatic hydrocarbons (PAHs) and their methylated congeners, novel oxygen- and nitrogen-containing PAHs and, especially, oxygenated PAHs (Oxy-PAHs) were identified. Interleukin (IL)-6 was associated with Oxy-PAHs of 1,8-naphthalic anhydride, xanthone, and benzo[h]quinolone, especially, whereas IL-1ß and tumor necrosis factor (TNF)-α were associated with most species. Most species were related to IL-1ß, which was significantly higher in the heating season, with a monotonic dose-response pattern mainly for Oxy-PAHs and a U-shaped dose-response pattern for primary species. On the basis of the identified components, four sources of pollution (coal combustion, traffic emissions, biomass burning, and secondary formation, traced by Oxy-PAHs such as 1,8-naphthalic anhydride and quinones) were resolved by the positive matrix factorization model. TNF-α was associated with primary sources, whereas IL-1ß and IL-6 were associated with both primary and secondary sources, suggesting different inflammatory effects between primary and secondary sources when assessing the toxicity-driven disparities of known and unknown PM2.5 components.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , China , Carvão Mineral , Monitoramento Ambiental , Material ParticuladoRESUMO
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Material Particulado/efeitos adversos , Células A549 , Poluição do Ar/efeitos adversos , Humanos , Pulmão/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Tamanho da Partícula , Mucosa Respiratória/efeitos dos fármacosRESUMO
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2.
Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Tecido Adiposo/metabolismo , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Animais , Cidades , Expressão Gênica/efeitos dos fármacos , Londres , Pulmão/efeitos dos fármacos , Masculino , Metais/análise , Camundongos , Obesidade/epidemiologia , Estresse Oxidativo/fisiologia , Material Particulado/análiseRESUMO
Fine particulate matter (PM2.5) air pollution poses a major risk to human health worldwide, and absorbed chemicals play a key role in determining the toxicity of PM2.5. After inhalation and entry into the lungs, PM2.5 components induce pro-inflammatory cytokines (e.g., interleukin (IL)-1ß) in pulmonary cells. To test whether PM2.5 components induce IL-1ß through signing pathways that include the toll-like receptor 4 (TLR4)/nuclear factor-κ-gene binding (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), we exposed the mouse macrophage cell-line RAW264.7 to both water and organic extracts of PM2.5 sampled over a 1-year period in Beijing, China. Varying degrees of oxidative stress and inflammatory responses were induced following exposure, while organic extracts of PM2.5 collected during the heating season induced more significant responses. This response is attributed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion and biomass burning for domestic heating. The inhibition of signaling molecules suggested that increased IL-1ß was associated with the TLR4/NF-κB pathway and NLRP3 inflammasome activation, with a slightly difference between water and organic extracts exposure groups, which was likely the result of different chemical components. Our study elucidated a potentially important mechanism by which PM2.5 components could trigger pulmonary inflammation, thus improving our understanding of the deleterious effects of this important and prevalent form of air pollution.
Assuntos
Poluentes Atmosféricos/toxicidade , Interleucina-1beta/metabolismo , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Animais , Pequim , Linhagem Celular , China , Humanos , Pulmão/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Material Particulado/análise , Pneumonia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estações do Ano , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismoRESUMO
Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM2.5 (particles with aerodynamic diameterâ¯≤â¯2.5⯵m) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM2.5. HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM2.5. While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating.