Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Mater Au ; 4(1): 92-98, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38221918

RESUMO

Polylactic acid (PLA) and bioplastics alike have a designed degradability to avoid the environmental buildup that petroplastics have created. Yet, this designed biotic-degradation has typically been characterized in ideal conditions. This study seeks to relate the abiotic to the biotic degradation of PLA to accurately represent the degradation pathways bioplastics will encounter, supposing their improper disposal in the environment. Enzymatic hydrolysis was used to study the biodegradation of PLA with varying stages of photoaging. Utilizing a fluorescent tag to follow enzyme hydrolysis, it was determined that increasing the amount of irradiation yielded greater amounts of total enzymatic hydrolysis by proteinase K after 8 h of enzyme incubation. While photoaging of the polymers causes minimal changes in chemistry and increasing amounts of crystallinity, the trends in biotic degradation appear to primarily be driven by photoinduced reduction in molecular weight. The relationship between photoaging and enzyme hydrolysis appears to be independent of enzyme type, though commercial product degradation may be impacted by the presence of additives. Overall, this work reveals the importance of characterizing biodegradation with relevant samples that ultimately can inform optimization of production and disposal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA