Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(22): e2301091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202659

RESUMO

Conventional sodium-based layered oxide cathodes are extremely air sensitive and possess poor electrochemical performance along with safety concerns when operating at high voltage. The polyanion phosphate, Na3 V2 (PO4 )3 stands out as an excellent candidate due to its high nominal voltage, ambient air stability, and long cycle life. The caveat is that Na3 V2 (PO4 )3 can only exhibit reversible capacities in the range of 100 mAh g-1 , 20% below its theoretical capacity. Here, the synthesis and characterizations are reported for the first time of the sodium-rich vanadium oxyfluorophosphate, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O, a tailored derivative compound of Na3 V2 (PO4 )3 , with extensive electrochemical and structural analyses. Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O delivers an initial reversible capacity of 117 mAh g-1 between 2.5 and 4.5 V under the 1C rate at room temperature, with 85% capacity retention after 900 cycles. The cycling stability is further improved when the material is cycled at 50 °C within 2.8-4.3 V for 100 cycles. When paired with a presodiated hard carbon, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O cycled with a capacity retention of 85% after 500 cycles. Cosubstitution of the transition metal and fluorine in Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O as well as the sodium-rich structure are the major factors behind the improvement of specific capacity and cycling stability, which paves the way for this cathode in sodium-ion batteries.

2.
ACS Appl Mater Interfaces ; 14(39): 44292-44302, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129828

RESUMO

Interfacial mechanics are a significant contributor to the performance and degradation of solid-state batteries. Spatially resolved measurements of interfacial properties are extremely important to effectively model and understand the electrochemical behavior. Herein, we report the interfacial properties of thiophosphate (Li3PS4)- and argyrodite (Li6PS5Cl)-type solid electrolytes. Using atomic force microscopy, we showcase the differences in the surface morphology as well as adhesion of these materials. We also investigate solvent-less processing of hybrid electrolytes using UV-assisted curing. Physical, chemical, and structural characterizations of the materials highlight the differences in the surface morphology, chemical makeup, and distribution of the inorganic phases between the argyrodite and thiophosphate solid electrolytes.

3.
J Colloid Interface Sci ; 581(Pt B): 635-643, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818677

RESUMO

Lithium-ion battery (LIB) production can benefit both economically and environmentally from aqueous processing. Although these electrodes have the potential to surpass electrodes conventionally processed with N-methyl-2-pyrrolidone (NMP) in terms of performance, significant issues still exist with respect to ultra-thick cathodes (≫4 mAh/cm2 areal capacities). A major concern for these types of electrodes with high-nickel active material stems from lithium leaching from active material, which drives the pH of the dispersion in excess of 12 and subsequently corrodes the current collector interface. As this corrosion reaction proceeds, hydrogen generation at the interface creates bubbles which cause severe cracking in the dried electrode surface. When areal loadings are increased, this effect becomes more pronounced and is detrimental to both mechanical and electrochemical properties of these electrodes. Herein, a technique for mitigating corrosion at the current collector by adjusting the pH of the dispersion with the addition of phosphoric acid is investigated. Phosphoric acid was added in 0.5 wt% increments between 0.0 and 1.5 wt%, and effects on rheology, adhesion, corrosion, and electrochemical performance were investigated. A technique is reported for producing aqueous processed cathodes with areal loadings of 6-8 mAh/cm2 with reduced surface cracking and superior high-rate discharge capacity (i.e. high-power performance) for this class of cathode loadings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA