Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 8(11): e11434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387498

RESUMO

Citronellol, a monoterpene found in the essential oils of Cymbopogo plants has been reported to possess various biological properties. In the present study, we investigated the neuroprotective mechanisms of citronellol against rotenone induced neurodegeneration by using rat model of Parkinson's disease (PD). Our results demonstrated that oral administration of citronellol prevented rotenone induced reactive oxygen species production, lipid peroxidation and enhanced Nrf2 expression, catalase, glutathione peroxidase and superoxide dismutase levels in the brain. Enzyme-linked immunosorbent assays showed that citronellol reduced secretion of TNF-α, IL-1ß, IL-6 and decreased MMP-9 expression levels. Further, citronellol prevented rotenone induced microglia (Iba-1 staining) and astrocyte (GFAP staining) activation. Western blot analysis showed that citronellol significantly decreased the expression of cyclooxygenase-2 and inducible nitric oxide synthase-2 that are key markers of neuroinflammation. We further evaluated the effect of citronellol on dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) which are key anatomical structures in PD. Tyrosine hydroxylase (TH) immunoreactivity showed that citronellol preserved Tyrosine hydroxylase (TH) positive dopaminergic neurons and enhanced TH striatal expression levels significantly compared to rotenone alone group. Further, to understand the effect of citronellol on apoptosis and proteotoxicity, we evaluated apoptotic markers (Bax, Bcl-2), growth regulator (mTOR) and α-synuclein expression. Citronellol attenuated rotenone induced expression of pro-apoptotic protein Bax, reduced α-synuclein expression and enhanced Bcl-2 and mTOR levels. In addition, citronellol modulated autophagy pathway by decreasing LC-3 (Microtubule-associated proteins) and p62 levels. Taken together, our results demonstrate that citronellol protected dopaminergic neurons through its antioxidant, anti-inflammatory, anti-apoptotic and autophagy modulating properties.

2.
Sci Rep ; 12(1): 490, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017530

RESUMO

Based on the findings from the Phase III clinical trials of inactivated SARS COV-2 Vaccine, (BBIBP-CORV) emergency use authorization (EUA) was granted for the vaccine to frontline workers in the UAE. A prospective cohort study was conducted among frontline workers to estimate the incidence rate and risk of symptomatic COVID-19 infection 14 days after the second dose of inoculation with BBIBP-CORV inactivated vaccine. Those who received two doses of the BBIBP-CORV vaccine in the period from 14th of September 2020 (first dose) to 21st of December 2020 (second dose) were followed up for COVID-19 infections. 11,322 individuals who received the two-dose BBIBP-CORV vaccine were included and were followed up post the second dose plus fourteen days. The incidence rate of symptomatic infection was 0.08 per 1000-person days (95% CI 0.07, 0.10). The estimated absolute risk of developing symptomatic infection was 0.97% (95% CI 0.77%, 1.17%). The confirmed seroconversion rate was 92.8%. There were no serious adverse events reported and no individuals suffered from severe disease. Our findings show that vaccinated individuals are likely to remain protected against symptomatic infection or becoming PCR positive for SARS COV 2 following the second dose of the vaccination.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/diagnóstico , Vacinas de Produtos Inativados/administração & dosagem , Adulto , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/efeitos adversos , Ensaios Clínicos Fase III como Assunto , Feminino , Seguimentos , Cefaleia/etiologia , Pessoal de Saúde , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Emirados Árabes Unidos/epidemiologia , Vacinas de Produtos Inativados/efeitos adversos
3.
Mar Drugs ; 14(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322291

RESUMO

The frondosides are triterpenoid glycosides from the Atlantic sea cucumber Cucumaria frondosa. Frondoside A inhibits growth, invasion, metastases and angiogenesis and induces apoptosis in diverse cancer types, including pancreatic cancer. We compared the growth inhibitory effects of three frondosides and their aglycone and related this to the pharmocokinetics and route of administration. Frondoside A potently inhibited growth of pancreatic cancer cells with an EC50 of ~1 µM. Frondoside B was less potent (EC50 ~2.5 µM). Frondoside C and the aglycone had no effect. At 100 µg/kg, frondoside A administered to CD2F1 mice as an i.v. bolus, the Cpmax was 129 nM, Cltb was 6.35 mL/min/m², and half-life was 510 min. With i.p. administration the Cpmax was 18.3 nM, Cltb was 127 mL/min/m² and half-life was 840 min. Oral dosing was ineffective. Frondoside A (100 µg/kg/day i.p.) markedly inhibited growth cancer xenografts in nude mice. The same dose delivered by oral gavage had no effect. No evidence of acute toxicity was seen with frondoside A. Frondoside A is more potent inhibitor of cancer growth than other frondosides. The glycoside component is essential for bioactivity. Frondoside A is only effective when administered systemically. Based on the current and previous studies, frondoside A appears safe and may be valuable in the treatment of cancer.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Glicosídeos/farmacologia , Glicosídeos/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/farmacocinética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/metabolismo , Pepinos-do-Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA