Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 233: 116435, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331556

RESUMO

In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.


Assuntos
Poluentes Atmosféricos , Mercúrio , Metais Pesados , Tillandsia , Oligoelementos , Humanos , Oligoelementos/análise , Material Particulado/análise , Tillandsia/química , Brasil , Monitoramento Biológico , Saúde Pública , Alumínio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromo/análise , Mercúrio/análise , Manganês/análise , Metais Pesados/análise
2.
Antibiotics (Basel) ; 11(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421294

RESUMO

Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and ß-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.

3.
Environ Pollut ; 289: 117817, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34333268

RESUMO

In several countries, flower import regulations are restricted to food security, by establishing maximum residue limits (MRL) for pesticides in flower-based food products and biosafety, in order to limit the circulation of vectors, pests and exotic species across borders. In this context, the lack of limits on pesticides in flower-products for ornamental purposes can influence the pesticide overuse in production areas, as well as the transfer of contaminated products between countries. Therefore, the purpose of this review was to discuss possible adverse effects on human and environmental health of pesticides used in floriculture, evaluating regulations on the use of these pesticides in the main importing and flower-producing countries. This review included 92 documents. The use of 201 compounds was identified by interviews and analytical measurements. Among them, 93 are banned by the European Union (EU), although 46.3 % of these compounds have been identified in samples from European countries. Latin American countries have a large number of scientific publications on pesticides in flower production (n = 51), while the EU and China have less studies (n = 24) and the United States and Japan have no studies. Regarding adverse health effects, poorer neurobehavioral development, reproductive disorders, congenital malformations and genotoxicity have been reported for residents of flower production areas and workers throughout the flower production cycle. Studies including water samples show overuse of pesticides, while environmental impacts are related to water and air contamination, soil degradation and adverse effects on the reproduction and development of non-target organisms. This review points out that the absence of MRL for non-edible flowers can be crucial for the trade of contaminated products across borders, including pesticides banned in importing countries. Furthermore, setting limits on flowers could reduce the use of pesticides in producing countries.


Assuntos
Resíduos de Praguicidas , Praguicidas , Exposição Ambiental , Poluição Ambiental , Flores/química , Contaminação de Alimentos/análise , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo
4.
Braz J Microbiol ; 52(2): 675-686, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33590447

RESUMO

Poultry litter is widely applied as agricultural fertilizer and can affect the soil microbiome through nutrient overload and antibiotic contamination. In this study, we assessed changes in soil bacterial diversity using high-throughput sequencing approaches. Four samples in triplicate were studied: soils with short- and long-term fertilization by poultry litter (S1 = 10 months and S2 = 30 years, respectively), a soil inside a poultry shed (S3), and a forest soil used as control (S0). Samples S0, S1, and S2 revealed a relatively high richness, with confirmed operational taxonomic units (OTUs) in the three replicates of each sample ranging from 1243 to 1279, while richness in S3 was about three times lower (466). The most abundant phyla were Proteobacteria, Bacteroidetes, and Actinobacteria. Acidobacteria, Planctomycetes, and Verrucomicrobia were also abundant but highly diminished in S3, while Firmicutes was less abundant in S0. Changes in bacterial communities were very evident at the genera level. The genera Gaiella, Rhodoplanes, Solirubacter, and Sphingomonas were predominant in S0 but strongly decreased in the other soils. Pedobacter and Devosia were the most abundant in S1 and were diminished in S2, while Herbiconiux, Brevundimonas, Proteiniphilum, and Petrimonas were abundant in S2. The most abundant genera in S3 were Deinococcus, Truepera, Rhodanobacter, and Castellaniella. A predictive analysis of the metabolic functions with Tax4Fun2 software suggested the potential presence of enzymes associated with antibiotic resistance as well as with denitrification pathways, indicating that the S3 soil is a potential source of nitrous oxide, a powerful greenhouse gas.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Fezes/química , Fertilizantes/análise , Microbiologia do Solo , Agricultura , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Filogenia , Aves Domésticas , Solo/química
5.
Environ Res ; 193: 110526, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249035

RESUMO

On January 2019, the B1 iron ore tailings' dam collapsed in Brumadinho, Brazil, being one of the worst mining-related disasters, with 270 human deaths (11 of them still missing) and 12.106 m3 of tailings released to the environment. The tailings devastated the Córrego do Feijão brook and reached the adjacent Paraopeba River, the region's main watercourse and a major tributary of the São Francisco basin. Although physicochemical parameters of the river were strongly impacted, and acute toxicological effects have been reported from exposure experiments, contamination of aquatic biota had not yet been assessed. Therefore, the aim of this study was to evaluate contamination by trace elements (As, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in sediment, fish and macrophytes along the Paraopeba River, upstream and downstream from the dam failure site, during the dry and wet season. With the exception of Cd and Hg, all elements in sediment samples had lower median concentrations downstream. An inverse pattern was observed for the aquatic biota, with significant higher concentrations of Fe, Mn, Ni and Zn in fishes, and increased concentrations of most elements in macrophytes, indicating an increase in element bioavailability. A significant seasonal variation was observed with increased concentrations of As (dry season) and Pb (wet season) in fish samples, with the same trend occurring in macrophytes. Concentrations of potentially toxic elements in fish samples in wet weight (Cr: 1.80 ± 1.31 mg kg-1, Hg: 0.21 ± 0.11 mg kg-1 and Pb: 0.79 ± 0.80 mg kg-1) were lower than those reported before the disaster. Furthermore, As and Pb concentrations exceeded the safety threshold for fish consumption in 3% and 41% of samples, respectively, representing a matter of concern for public health.


Assuntos
Metais Pesados , Colapso Estrutural , Oligoelementos , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental , Peixes , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Estações do Ano , Oligoelementos/análise , Poluentes Químicos da Água/análise
6.
J Environ Sci Health B ; 55(12): 1087-1098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32900284

RESUMO

Poultry litter soil application contributes to sustainability of agricultural systems and is in accordance with the United Nations Sustainable Development Goals (UN-SDG). Poultry litter recommended rates are based on crop nitrogen (N) needs, however, their application can be a potential source of antibiotics and trace elements overload. The aim of the study was to estimate the role of poultry litter application on soil contamination by fluoroquinolones [enrofloxacin (ENR) and ciprofloxacin (CIP)] and trace elements, based on N requirements for crops. Analytical and sampling techniques were used to estimate the loads from poultry litter application. Only CIP was found in poultry litter samples (283 ± 124 µg kg-1) and its load was estimated to be of 9.89 ± 4.33 g ha-1, for the poultry litter application (35 t ha-1). The estimated loads (g ha-1) of trace elements were: Cr 9.19 ± 3.26, Ni 12.3 ± 4.93, Pb 22.0 ± 8.26, Cu 229 ± 85.6, Mn 691 ± 259 and Zn 1,011 ± 378. These estimates were 900% higher than those recommended by the technical guidance, while N exceeded 600% the recommended application. In order to achieve UN-SDGs, local policies to disseminate knowledge and technologies are required for consolidating sustainable agricultural practices.


Assuntos
Fluoroquinolonas/análise , Esterco/análise , Nitrogênio , Aves Domésticas , Poluentes do Solo/análise , Oligoelementos/análise , Agricultura , Animais , Brasil , Ciprofloxacina/análise , Produtos Agrícolas , Enrofloxacina/análise , Fertilizantes , Solo/química
7.
Chemosphere ; 219: 409-417, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30551107

RESUMO

Our main goal was to investigate the potential accumulation of fluoroquinolones (FQs) in agricultural soils over extended periods of land use, predicting leaching and estimating risk quotients for soil microorganisms. Short to long-term of poultry litter fertilization (<1-30 years) were evaluated for enrofloxacin (ENR) and ciprofloxacin (CIP) input, in addition to the emergence of plasmid-mediated quinolone resistance (PMQR) genes. High FQs concentration (range 0.56-100 mg kg-1) were measured in poultry litter samples. In soils, FQs occurrence and risks have changed over the years. An accumulation trend was observed between short and medium-term fertilized soils (ST and MT soils), reaching a range of 330-6138 µg kg-1 ENR and 170-960 µg kg-1 CIP in MT soil, followed by decreased concentrations in long-term fertilized soils (LT soils). The environmental risk assessment showed a high ENR risk quotient (RQ ≥ 1) in ST and MT soils ranging (7-226) and high CIP risk (9-53) in LT soils. The detection of qnrS genes in the area with the lowest FQs concentration emphasizes the importance of a broader approach to environmental assessment, in which not only target compounds are considered. FQs soil-water migration model pointed out a high leaching risk in ST soil. To reduce risks, management measures to decrease antibiotic environmental load should be taken before poultry litter application. In addition, the high weathering of tropical soils contributing to possible fate of antibiotics to water resources through drainage basins should be considered.


Assuntos
Agricultura , Fluoroquinolonas/análise , Solo/química , Animais , Antibacterianos/análise , Ciprofloxacina/análise , Enrofloxacina/análise , Aves Domésticas , Medição de Risco , Poluentes do Solo/análise
8.
Environ Monit Assess ; 191(1): 28, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591972

RESUMO

Poultry litter is widely used as fertilizer in soils and can be a relevant source of heavy metals for agricultural environments. In this study, poultry litter fertilization of long-term (< 1-30 years) was evaluated in tropical soils. Our main goal was to investigate the occurrence of temporal variation in the available fraction of heavy metals (Cu, Cr, Zn, Pb, Cd, and Mn) in soils, in addition to their environmental loads through new indexes for risk assessment. The highest mean concentrations in poultry litter were the following: 525 mg kg-1 for Mn, 146 mg kg-1 for Zn, and 94.4 mg kg-1 for Cu. For soils, concentrations were higher for the same heavy metals: Mn (906 mg kg-1), Zn (111 mg kg-1), and Cu (26.3 mg kg-1). Significant accumulation (p < 0.05) in fertilized soils was observed for Cu, Cr, and Zn. The high estimates of poultry litter input based on geological background (LIGB) for Cu, Cr, and Zn coincided with the accumulation observed in soils, confirming the effectiveness of the index. The risk of biogeochemical transfer based on fertilized soils (LIFS) decreased for Cu, Cr, and Zn between 10 and 30 years of soil fertilization. For Mn, a very high LIFS was estimated in all long-term fertilized soils. The proposed indices, based on heavy metal concentration, can be used in risk assessments to guide future studies that analyze other environmental matrices possibly impacted by manure and poultry litter fertilization.


Assuntos
Monitoramento Ambiental/métodos , Fertilizantes/análise , Esterco/análise , Metais Pesados/análise , Solo/química , Agricultura , Animais , Brasil , Aves Domésticas , Medição de Risco , Poluentes do Solo/análise
9.
Chemosphere ; 184: 1261-1269, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28672725

RESUMO

In this study, pyrethroids were determined in chicken eggs from commercial farm (n = 60) and home egg production (n = 30). These pyrethroids were investigated: bifenthrin, phenothrin, permethrin, cyfluthrin, cypermethrin and fenvalerate, including most diastereomers. Quantification was done using GC-MS in a negative chemical ionization mode. Pyrethroids residues were found in 79% of the analyzed samples. Cypermethrin presented the highest occurrence, being quantified in 62 samples (69%) in concentrations (lipid weight - l w.) varying between 0.29 and 6408 ng g-1, followed by phenothrin (24%), 21-3910 ng g-1, permethrin (14%), 2.96-328 ng g-1, and bifenthrin (11%), 3.77-16.7 ng g-1. Cyfluthrin and fenvalerate were not detected. Home-produced eggs had a higher occurrence of pyrethroids (97%), with a greater predominance of phenothrin. In commercial production, 70% of the samples presented pyrethroid residues (predominantly cypermethrin). This is the first report about the presence of pyrethroids in home-produced eggs and the first description of a selectivity pattern with the predominance of cis diastereomers in chicken eggs. In general, estimated daily intake does not present a risk to human consumption, according to Brazilian and international standards (FAO/WHO). However, one third of the samples (30 eggs) had concentrations above the maximum residue limits (MRLs). The maximum cypermethrin concentration was 66 times the MRL, while the maximum phenothrin concentration was 11 times the limit. Further studies about transfer dynamics, bioaccumulation and metabolic degradation of stereoisomers are required, as well as determining if this selectivity pattern in food can increase consumer's health risk.


Assuntos
Ovos/análise , Exposição Ambiental/estatística & dados numéricos , Fazendas , Inseticidas/análise , Piretrinas/análise , Animais , Brasil , Galinhas/metabolismo , Dieta/estatística & dados numéricos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Nitrilas , Permetrina/análise , Piretrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA