Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(9): 3581-3589, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34862604

RESUMO

BACKGROUND: The interest of consumers and market and scientific research for added-value foods obtained with environmentally sustainable productive chains is increasing. Silver fir (Abies alba Mill.) needles (SFNs), often by-products of forest management and logging, represent an unexploited source of bioactive compounds. RESULTS: For the first time, SFN aqueous extract obtained through controlled hydrodynamic cavitation was used to enrich whole wheat flour bread. The first trial found that 35% SFNs extract addition was the absolute threshold of taste perception. The second trial investigated dough rheological properties and bread technological and antioxidant properties in samples enriched with 35% and 100% SFNs extract compared with the control (0% SFNs extract). SFNs extract significantly increased bread antioxidant capacity in both 35% and 100% SFN fresh breads by ~42.5% and ~87% respectively and in 100% SFNs bread samples after 72 h of storage by ~76%. Enrichment of 35% showed higher alveograph dough extensibility (~11%) and different bread texture in terms of hardness, springiness, and chewiness. Enrichment with 100% SFNs extract significantly improved dough and bread technological quality: it increased alveograph dough extensibility L (~18%), swelling index G (~8%), and flour strength W (~14%) and showed the highest increase in bread specific volume (~0.200 L kg-1 ). CONCLUSIONS: SFNs aqueous extract produced with controlled hydrodynamic cavitation appeared a valuable technical material for the manufacturing of added-value and functional breads. © 2021 Society of Chemical Industry.


Assuntos
Abies , Pão , Antioxidantes/química , Farinha , Agulhas , Triticum/química , Água/química
2.
Food Chem ; 338: 128120, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091998

RESUMO

The kneading step of wholewheat flour (WWF) dough was monitored using low-resolution 1H nuclear magnetic resonance (NMR). The tested variables were kneading time and total water content. Two 1H Free induction decay (FID) (A and B) and four 1H T2 Car-Purcell-Meiboom-Gill (CPMG) (C, D, E and F) proton populations were observed and the attribution to the different proton domains was made based on the literature and data acquisition. Kneading time significantly increased the mobility and the relative abundance of popA, the relative abundance and strength of protons of popC, D and E, while significantly reducing the relative amount of popF and increasing its mobility. This evolution of the proton populations during kneading was interpreted as chemical/physical transformations of the flour constituents. The use of WWF may reveal the changes in molecular dynamics underlying the higher water requirements of unrefined doughs, often associated with improved bread quality.


Assuntos
Pão/análise , Culinária , Farinha/análise , Espectroscopia de Prótons por Ressonância Magnética , Triticum/química , Água/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA