Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 611(7936): 532-539, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323788

RESUMO

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Assuntos
Transtorno do Espectro Autista , Córtex Cerebral , Variação Genética , Transcriptoma , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurônios/metabolismo , RNA/análise , RNA/genética , Transcriptoma/genética , Autopsia , Análise de Sequência de RNA , Córtex Visual Primário/metabolismo , Neuroglia/metabolismo
2.
Biol Psychiatry ; 89(9): 896-910, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33386132

RESUMO

BACKGROUND: Maternal immune activation (MIA) is a proposed risk factor for multiple neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through which MIA imparts risk remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for studying underlying molecular correlates. METHODS: We performed RNA sequencing across psychiatrically relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison from 3.5- to 4-year-old male MIA-exposed and control offspring-an age comparable to mid adolescence in humans. RESULTS: We identify 266 unique genes differentially expressed in at least one brain region, with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal and regional differences, transcriptomic changes were shared across first- and second-trimester exposures, including for the top differentially expressed genes-PIWIL2 and MGARP. In addition to PIWIL2, several other regulators of retrotransposition and endogenous transposable elements were dysregulated following MIA, potentially connecting MIA to retrotransposition. CONCLUSIONS: Together, these results begin to elucidate the brain-level molecular processes through which MIA may impart risk for psychiatric disease.


Assuntos
Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal , Animais , Proteínas Argonautas , Modelos Animais de Doenças , Feminino , Humanos , Poli I-C , Gravidez , Primatas , Transcriptoma
3.
Science ; 362(6420)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545856

RESUMO

Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Bipolar/genética , Predisposição Genética para Doença , Splicing de RNA , Esquizofrenia/genética , Encéfalo/metabolismo , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Transcriptoma
5.
J Neurophysiol ; 114(3): 2043-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26133801

RESUMO

The coordinated activity of neural ensembles across multiple interconnected regions has been challenging to study in the mammalian brain with cellular resolution using conventional recording tools. For instance, neural systems regulating learned behaviors often encompass multiple distinct structures that span the brain. To address this challenge we developed a three-dimensional (3D) silicon microprobe capable of simultaneously measuring extracellular spike and local field potential activity from 1,024 electrodes. The microprobe geometry can be precisely configured during assembly to target virtually any combination of four spatially distinct neuroanatomical planes. Here we report on the operation of such a device built for high-throughput monitoring of neural signals in the orbitofrontal cortex and several nuclei in the basal ganglia. We perform analysis on systems-level dynamics and correlations during periods of conditioned behavioral responding and rest, demonstrating the technology's ability to reveal functional organization at multiple scales in parallel in the mouse brain.


Assuntos
Gânglios da Base/fisiologia , Mapeamento Encefálico/instrumentação , Eletroencefalografia/instrumentação , Lobo Frontal/fisiologia , Potenciais de Ação , Animais , Mapeamento Encefálico/métodos , Eletrodos , Eletroencefalografia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA