Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nanoscale ; 15(33): 13728-13739, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37577823

RESUMO

Acne vulgaris is widely regarded as the most prevalent skin disorder characterized by painful, inflammatory skin lesions that are primarily attributed to the pathogenic actions of Cutibacterium acnes (C. acnes). To improve the clinical management of this disease, there is a pressing clinical demand to develop innovative antibacterial therapies that utilize novel mechanisms. The current research aimed to discover the antibacterial efficacy of narasin (NAR), a polyether ionophore, against drug-resistant acne bacteria. In addition, the study aimed to formulate self-nanomicellizing solid dispersions (SNMSD), utilizing Soluplus® (SOL), as a drug delivery system to incorporate NAR and selectively target the lipophilic C. acnes abundant environments within the skin. Furthermore, the study aimed to investigate the ex vivo deposition and permeation of NAR into the various layers of the skin using full-thickness porcine ear skin as a model skin. By encapsulating NAR within spherical polymeric micelles (dn < 80 nm) aqueous solubility was significantly increased by approximately 100-fold (from <40 µg mL-1 to 4600 µg mL-1). Following optimization, the micelle solution was integrated into a gel formulation (containing 0.2% w/v NAR) and evaluated for stability over 4 weeks at room temperature (drug content >98%). Results from drug deposition and permeation experiments demonstrated that the deposition of NAR from the NAR-micelle solution and its gel formulation into the lipophilic stratum corneum (19 835.60 ± 6237.89 ng cm-2 and 40 601.14 ± 3736.09 ng cm-2) and epidermis (19 347 ± 1912.98 ng cm-2 and 18 763.54 ± 580.77 ng cm-2) was superior to that of NAR in solution, which failed to penetrate any skin layers. In conclusion, the outcomes of this study provide evidence that NAR exhibits promising activity against antimicrobial resistant strains of C. acnes (MIC range ≤0.008-0.062) and that micelle nanocarriers can improve the aqueous solubility of poorly water-soluble drugs. Furthermore, our results highlight the ability of nanomicelles to enable selective and targeted drug delivery to the lipophilic skin layers.


Assuntos
Acne Vulgar , Micelas , Animais , Suínos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nanotecnologia
2.
Biomater Adv ; 153: 213556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478770

RESUMO

Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.


Assuntos
Neoplasias Colorretais , Portadores de Fármacos , Humanos , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
3.
Pharmaceutics ; 14(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890384

RESUMO

The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for enhancing bioavailability and to obtain synergistic anti-cancer effect against breast cancer. SNEDDS were developed using capmul MCM as oil, Tween 80 as surfactant and transcutol-HP as co-surfactant and optimized by central composite rotatable design. Neusilin US2 concentration was optimized for adsorption of liquid SNEDDS to prepare s-SNEDDS. The developed formulation was characterized and investigated for various in vitro and cell line comparative studies. Optimized TAM-RES-s-SNEDDS showed spherical droplets of a size less than 200 nm. In all in vitro studies, TAM-RES-s-SNEDDS showed significantly improved (p ˂ 0.05) release and permeation across the dialysis membrane and intestinal lumen. Moreover, TAM-RES-s-SNEDDS possessed significantly greater therapeutic efficacy (p < 0.05) and better internalization on the MCF-7 cell line as compared to the conventional formulation. Additionally, oral bioavailability of TAM from SNEDDS was 1.63 folds significantly higher (p < 0.05) than that of combination suspension and 4.16 folds significantly higher (p < 0.05) than TAM suspension. Thus, findings suggest that TAM- RES-s-SNEDDS can be the future delivery system that potentially delivers both drugs to cancer cells for better treatment.

4.
Neurotox Res ; 40(4): 995-1006, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35635716

RESUMO

Edaravone has been widely used in the treatment of acute ischemic stroke. However, there has been no oral preparation of edaravone in the clinic. In this study, we assessed the effect and possible mechanisms of oral edaravone on the middle cerebral artery occlusion (MCAO) model in rats. Highly bioavailable form of novel edaravone formulation developed using self-nanomicellizing solid dispersion strategy which showed up to 16.1-fold improved oral bioavailability was considered oral edaravone. The male rats (n = 84) were randomly divided into sham; model; oral edaravone in low dose (10 mg/kg), medium dose (20 mg/kg), and high dose (30 mg/kg); and edaravone by intraperitoneal administration group (IP group, 10 mg/kg). Rats were treated with different drugs 5 h after the operation, twice a day for 7 days. The behavioral data were dose-dependently improved by oral edaravone and sensorimotor functions of the high dose group were similar to those of the edaravone by IP route group. Furthermore, oral edaravone significantly reduced cerebral infarction area and downregulated the levels of caspase-3, GFAP, Iba1, 3-NT, and 4-HNE, whereas upregulated those of Vamp-2 and Map-2 in a dose-dependent manner. Especially effect of the high dose on these molecules was equal to that of edaravone by IP administration. Taken together, our data suggest that the improvement of sensorimotor deficits by oral edaravone in high doses after ischemia is similar to that in edaravone by IP administration. Neuroprotection of oral edaravone is at least partial by minimizing oxidative stress, the overactivation of glial cells, and the levels of the apoptosis-associated proteins, and alleviating synaptic damage in a dose-dependent manner.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Animais , Antipirina/uso terapêutico , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos
5.
3D Print Med ; 8(1): 14, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523913

RESUMO

BACKGROUND: Additive manufacturing (AM), commonly called 3D Printing (3DP), for medical devices is growing in popularity due to the technology's ability to create complex geometries and patient-matched products. However, due to the process variabilities which can exist between 3DP systems, manufacturer workflows, and digital conversions, there may be variabilities among 3DP parts or between design files and final manufactured products. The overall goal of this project is to determine the dimensional variability of commercially obtained 3DP titanium lattice-containing test coupons and compare it to the original design files. METHODS: This manuscript outlines the procedure used to measure dimensional variability of 3D Printed lattice coupons and analyze the differences in external dimensions and pore area when using laser and electron beam fabricated samples. The key dimensions measured were the bulk length, width, and depth using calipers. Strut thickness and pore area were assessed for the lattice components using optical imaging and µCT. RESULTS: Results show a difference in dimensional measurement between printed parts and the computer-designed files for all groups analyzed including the internal lattice dimensions. Measurements of laser manufactured coupons varied from the nominal by less than 0.2 mm and results show averages greater than the nominal value for length, width, and depth dimensions. Measurements of Electron Beam Melting coupons varied between 0.4 mm-0.7 mm from the nominal value and showed average lengths below the nominal dimension while the width and depths were greater than the nominal values. The length dimensions of Laser Powder Bed Fusion samples appeared to be impacted by hot isostatic press more than the width and depth dimension. When lattice relative density was varied, there appeared to be little impact on the external dimensional variability for the as-printed state. CONCLUSIONS: Based on these results, we can conclude that there are relevant variations between designed files and printed parts. However, we cannot currently state if these results are clinically relevant and further testing needs to be conducted to apply these results to real-world situations.

6.
J Mech Behav Biomed Mater ; 125: 104869, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653900

RESUMO

Lattice structures are used in a multitude of applications from medical to aerospace, and their adoption in these applications has been further enabled by additive manufacturing. Lattice performance is governed by a multitude of variables and estimating this performance may be needed during various phases of the design and validation process. Numerical modeling and constitutive relationships are common methodologies to assess performance, address risks, lower costs, and accelerate time to market for innovative and potentially life altering products. These methods are usually accompanied by engineering rationales to justify the methods appropriateness. However, engineering analyses and numerical models should be validated using experimental data when possible to quantify the accuracy of their predictions under conditions relevant to their planned use. In this work, a set of lattice design parameters are evaluated using numerical modeling and experimental methods under quasi-static tensile, compressive, and shear modalities. Regular body centered cubic (BCC) and stochastic Voronoi Tessellation Method (VTM) lattices are constructed with three different cell lengths (2.5 mm, 4.0 mm, 5.0 mm) and various strut diameter thicknesses (ranging from 0.536 mm-1.3506 mm) while maintaining the lattice's relative density (0.2 and 0.3). Some strut diameters were selected to challenge the AM process limits. Specimens were fabricated in nylon 12 on a laser powder bed fusion system. Optical microscopy showed up to a 28.6% difference between as-designed and fabricated strut diameters. Simulated reaction loads revealed up to a 4.6% difference in BCC lattices within a constant relative density at a 1.4 mm displacement boundary condition while the VTM samples had up to a 19.5% difference. Errors between the experimental and simulated lattice reaction loads were as high as 97.0%. This error magnitude appears to strongly correlate with lattice strut diameter. These results showcase that a computational estimation, even one with reasonable assumptions, may erroneously characterize the performance of these lattice structures, and that these assumptions should be challenged by experimentally evaluating and validating critical quantities of interest.


Assuntos
Microscopia , Nylons
7.
Drug Des Devel Ther ; 15: 1495-1507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859473

RESUMO

BACKGROUND: Drug-eluting gastrointestinal (GI) stents are emerging as promising platforms for the treatment of GI cancers and provide the combined advantages of mechanical support to prevent lumen occlusion and as a reservoir for localized drug delivery to tumors. Therefore, in this work we present a detailed quality assurance study of 5-fluorouracil (5FU) drug-eluting stents (DESs) as potential candidates for the treatment of obstructive GI cancers. METHODS: The 5FU DESs were fabricated via a simple two-step sequential dip-coating process of commercial GI self-expanding nitinol stents with a 5FU-loaded polyurethane basecoat and a drug-free protective poly(ethylene-co-vinyl acetate) topcoat. The drug loading, content uniformity and drug stability were determined using a validated high-performance liquid chromatography (HPLC) method, which is also recommended in the United States Pharmacopeia. In vitro drug release studies were performed in phosphate buffered saline to determine the drug releasing properties of the two 5FU-loaded stents. Gas chromatography (GC) and HPLC were employed to determine total residual tetrahydrofuran and N,N-dimethylformamide in the stents remaining from the manufacturing process. Sterilization of the stents was performed using gamma radiation and stability testing was carried out for 3 months. RESULTS: The drug loading analysis revealed excellent uniformity in the distribution of 5FU between and within individual stents. Determination of drug stability in the biorelevant release media confirmed that 5FU remains stable over 100 d. In vitro drug release studies from the stents revealed sustained release of 5FU across two different time scales (161 and 30 d), and mathematical modeling of drug release profiles revealed a diffusion-controlled mechanism for the sustained 5FU release. GC and HPLC analysis revealed that the daily residual solvent leached from the stents was below the United States (US) Food and Drug Administration (FDA) guidelines, and therefore, unlikely to cause localized/systemic toxicities. Sterilization of the stents with gamma radiation and accelerated stability tests over a period of 3 months revealed no significant effect on the stability or in vitro release of 5FU. CONCLUSION: Our results demonstrate that the 5FU DESs meet relevant quality standards and display favourable drug release characteristics for the potential treatment of GI cancers and related obstructions.


Assuntos
Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos , Stents Farmacológicos , Fluoruracila/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Antineoplásicos/química , Liberação Controlada de Fármacos , Fluoruracila/química , Humanos
8.
J Biomech ; 121: 110412, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33873110

RESUMO

Intervertebral body fusion devices (IBFDs) are commonly used in the treatment of various spinal pathologies. Intra-operative fractures of polyether-ether-ketone (PEEK) implants have been reported in the literature and to the FDA as device-related adverse events. The device and/or implant inserter failures typically occur during device impaction into the disc space and require implant removal and replacement. These additional steps may cause further complications along with increased surgical time and cost. Currently, there are no standardized test methods that evaluate clinically relevant impaction loading conditions on IBFDs. This study aims to develop an in vitro test method that would evaluate implant resistance to failure during intra-operative impaction. To achieve this, (1) surgical implantations of IBFDs were simulated in nine lumbar cadaver specimens by three different orthopedic spine surgeons (n = 3/surgeon). Impact force and mallet speed data were acquired for each surgeon. (2) Based on the acquired surgeon data, a benchtop mechanical test setup was developed to differentiate between two TLIF IBFD designs and two inserter designs (for a total of four IBFD-inserter combinations) under impaction loading. During implant insertion, impact force measurements indicated that lumbar IBFDs are subjected to high energy forces that may exceed their mechanical strength. Our test method successfully replicated clinically-relevant loading conditions and was effective at differentiating failure parameters between different implant and inserter instrument designs. The mechanical test method developed shows promise in its ability to assess impaction resistance of IBFD/inserter designs and evaluate potential risks of device failure during intraoperative loading.


Assuntos
Disco Intervertebral , Fusão Vertebral , Técnicas In Vitro , Vértebras Lombares/cirurgia , Região Lombossacral , Próteses e Implantes
9.
Pharmaceutics ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374233

RESUMO

Self-expanding metal stents (SEMSs) are currently the gold standard for the localised management of malignant gastrointestinal (GI) stenosis and/or obstructions. Despite encouraging clinical success, in-stent restenosis caused by tumour growth is a significant challenge. Incorporating chemotherapeutic drugs into GI stents is an emerging strategy to provide localised and sustained release of drugs to intestinal malignant tissues to prevent tumour growth. Therefore, the aim of this work was to develop and evaluate a local GI stent-based delivery system that provides a controlled release of 5-fluorouracil (5FU) over a course of several weeks to months, for the treatment of colorectal cancer and cancer-related stenosis/obstructions. The 5FU-loaded GI stents were fabricated via sequential dip-coating of commercial GI stents with a drug-loaded polyurethane (PU) basecoat and a drug-free poly(ethylene-co-vinyl acetate) (PEVA) topcoat. For comparison, two types of commercial stents were investigated, including bare and silicone (Si) membrane-covered stents. The physicochemical properties of the 5FU-loaded stents were evaluated using photoacoustic Fourier-transform infrared (PA-FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermal analysis. In vitro release studies in biological medium revealed that the 5FU-loaded stents provided a sustained release of drug over the period studied (18 d), and cell viability, cell cycle distribution and apoptosis assays showed that the released 5FU had comparable anticancer activity against human colon cancer cells (HCT-116) to pure 5FU. This study demonstrates that dip-coating is a facile and reliable approach for fabricating drug-eluting stents (DESs) that are promising candidates for the treatment of GI obstructions and/or restenosis.

10.
Pharmaceutics ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202841

RESUMO

Despite the promising properties of tea tree oil (TTO) as potential therapeutics for several superficial skin conditions, certain limitations such as physical instability and skin irritation have restricted its widespread use. This study focuses on developing a rationally designed lipid-based nanoformulation (TTO-LNF) in accordance with the US Food and Drug Administration standard using a well-recognized quality-by-design (QbD) approach. Using a mixture experimental design, TTO-LNF has been optimized with 5% TTO, 10% surfactant, 5% co-surfactant, and 80% water, which showed a 14.4 ± 4.4 nm droplet size and 0.03 ± 0.01 polydispersity index (PDI). To ease the topical administration, the TTO-LNF gel formulation was further developed using xanthan gum to achieve the desired viscosity and form a gel. The in vitro antibacterial tests of TTO-LNF showed promising inhibitory effects toward both Gram-negative and Gram-positive bacteria. In fact, a complete growth inhibition of S. epidermidis was observed when exposed to TTO-LNF and TTO-LNF gel for 24 h, showing better activity than antibiotic kanamycin (25 µg/mL). Additionally, the in vitro release study showed a sustained release profile with a 50% release in 24 h, which could be beneficial to reduce the toxicity and thereby improve the therapeutic efficacy for long-acting applications. Furthermore, the formulations were remarkably stable at 40 °C/75% Relative humidity (RH) for at least 4 weeks. Therefore, this study presents a promising strategy to develop a biocompatible and stable formulation that can be used for the topical treatment of skin infections.

11.
Curr Drug Metab ; 21(3): 235-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357812

RESUMO

BACKGROUND: p75ECD-Fc is a recombinant human protein that has recently been developed as a novel therapy for Alzheimer's disease. Current studies showed that it is able to alleviate Alzheimer's disease pathologies in animal models of dementia. Thus, knowledge about the pharmacokinetic behavior and tissue distribution of this novel protein is crucial in order to better understand its pharmacodynamics and more importantly for its clinical development. METHODS: The aim of this study is to characterize the pharmacokinetics of p75ECD-Fc after single intravenous and subcutaneous injection of 3mg/kg in Sprague Dawley rats. We calculated the bioavailability of the SC route and studied the distribution of that protein in different tissues, cerebrospinal fluid and urine using ELISA and immunofluorescence techniques. In-vitro stability of the drug was also assessed. Data obtained were analyzed with Non-compartmental pharmacokinetic method using R. RESULTS: Results showed that the bioavailability of SC route was 66.15%. Half-life time was 7.5 ± 1.7 and 6.2 ± 2.4 days for IV and SC injection, respectively. Tissue distribution of p75ECD-Fc was modest with the ability to penetrate the blood brain barrier. It showed high in vitro stability in human plasma. CONCLUSION: These acceptable pharmacokinetic properties of p75ECD-Fc present it as a potential candidate for clinical development for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Humanos , Macrófagos , Masculino , Modelos Animais , Proteínas do Tecido Nervoso , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural , Distribuição Tecidual
12.
J Pharm Sci ; 109(7): 2196-2205, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240689

RESUMO

A wound indicates a discontinuity in the epithelial integrity of the skin along with structural and functional disruption of the underlying normal tissue. The study focused on chitosan stabilized silver nanoparticles (CH-AgNP) further incorporated in a chitosan-based (CH-AgNP-CHF) film for wound healing. Dual advantages of chitosan as a wound-healing agent in addition to the antimicrobial property of CH-AgNP nanoparticles was explored. Based on preliminary trials, 1-2% w/v chitosan as film former, 15-25% w/v glycerin as plasticizer and Teflon as casting surface was selected. The optimized CH-AgNP-CHF had tensile strength 1.39 ± 0.009 N/mm2, % Elongation 33.33 ± 1.634, 76.66 ± 0.584% degree of swelling, WVTR of 2024.43 ± 32.78 gm.m-2 day-1 and 1144.57 ± 13.45 gm.m-2 day-1 after 24 h and after 21 days respectively. The CH-AgNP-CHF reported highest % inhibition of 62.22 ± 0.91 against Escherichia coli as compared to chitosan solution, chitosan film and CH-AgNP solution. Based on in vivo animal study, CH-AgNP-CHF showed highest wound closure rate at 3rd, 5th, 7th, 14th and 21st day to indicate better and faster wound healing compared to marketed SilverKind® Nanofine gel, blank chitosan film and sterile gauze treated group (Control). Thus, CH-AgNP-CHF is more effective alternative for wound healing.


Assuntos
Quitosana , Nanopartículas Metálicas , Animais , Bandagens , Prata , Cicatrização
13.
Int J Mol Sci ; 21(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947962

RESUMO

Herpes Simplex Virus Type 2 (HSV-2) is one of the most prevalent sexually transmitted viruses and is a known risk factor for HIV acquisition in the Female Genital Tract (FGT). Previously, we found that curcumin can block HSV-2 infection and abrogate the production of inflammatory cytokines and chemokines by genital epithelial cells in vitro. In this study, we investigated whether curcumin, encapsulated in nanoparticles and delivered by various in vivo routes, could minimize inflammation and prevent or reduce HSV-2 infection in the FGT. Female mice were pre-treated with curcumin nanoparticles through oral, intraperitoneal and intravaginal routes, and then exposed intravaginally to the tissue inflammation stimulant CpG-oligodeoxynucleotide (ODN). Local intravaginal delivery of curcumin nanoparticles, but not intraperitoneal or oral delivery, reduced CpG-mediated inflammatory histopathology and decreased production of pro-inflammatory cytokines Interleukin (IL)-6, Tumor Necrosis Factor Alpha (TNF-α) and Monocyte Chemoattractant Protein-1 (MCP-1) in the FGT. However, curcumin nanoparticles did not demonstrate anti-viral activity nor reduce tissue pathology when administered prior to intravaginal HSV-2 infection. In an alternative approach, intravaginal pre-treatment with crude curcumin or solid dispersion formulations of curcumin demonstrated increased survival and delayed pathology following HSV-2 infection. Our results suggest that curcumin nanoparticle delivery in the vaginal tract could reduce local tissue inflammation. The anti-inflammatory properties of curcumin delivered to the vaginal tract could potentially reduce the severity of HSV-2 infection and decrease the risk of HIV acquisition in the FGT of women.


Assuntos
Curcumina/farmacologia , Herpes Simples/patologia , Inflamação/patologia , Administração Intravaginal , Animais , Quimiocina CCL2/metabolismo , Curcumina/química , Curcumina/uso terapêutico , Portadores de Fármacos/química , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Genitália Feminina/citologia , Genitália Feminina/metabolismo , Herpes Simples/veterinária , Herpes Simples/virologia , Herpesvirus Humano 2/fisiologia , Humanos , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Oligodesoxirribonucleotídeos/toxicidade , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo , Vagina/metabolismo , Vagina/patologia
14.
Pharmaceutics ; 11(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698755

RESUMO

Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to utilize this property to develop a system to target anti-cancer drugs to lymphoid organs. We investigated, therefore, whether MPI could be used as a vehicle to deliver doxorubicin selectively, thereby reducing the toxicity of this antibiotic anthracycline drug. Doxorubicin was covalently attached to the surface of MPI using an acid-labile linkage to enable pH-controlled release. The MPI-doxorubicin conjugate was characterized using FTIR and SEM, confirming covalent attachment and indicating doxorubicin coupling had no obvious impact on the physical nanostructure, integrity, and cellular uptake of the MPI particles. To simulate the stability of the MPI-doxorubicin in vivo, it was stored in artificial lysosomal fluid (ALF, pH 4.5). Although the MPI-doxorubicin particles were still visible after 165 days in ALF, 53% of glycosidic bonds in the inulin particles were hydrolyzed within 12 days in ALF, reflected by the release of free glucose into solution. By contrast, the fructosidic bonds were much more stable. Drug release studies of the MPI-doxorubicin in vitro, demonstrated a successful pH-dependent controlled release effect. Confocal laser scanning microscopy studies and flow cytometric analysis confirmed that when incubated with live cells, MPI-doxorubicin was efficiently internalized by immune cells. An assay of cell metabolic activity demonstrated that the MPI carrier alone had no toxic effects on RAW 264.7 murine monocyte/macrophage-like cells, but exhibited anti-cancer effects against HCT116 human colon cancer cells. MPI-doxorubicin had a greater anti-cancer cell effect than free doxorubicin, particularly when at lower concentrations, suggesting a drug-sparing effect. This study establishes that MPI can be successfully modified with doxorubicin for chemotherapeutic drug delivery.

15.
Pharmaceutics ; 11(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661841

RESUMO

The use of particles for monocyte-mediated delivery could be a more efficient strategy and approach to achieve intracellular targeting and delivery of antitubercular drugs to host macrophages. In this study, the potential of inulin microparticles to serve as a drug vehicle in the treatment of chronic tuberculosis using a monocytes-mediated drug targeting approach was evaluated. Isoniazid (INH) was conjugated to inulin via hydrazone linkage in order to obtain a pH-sensitive inulin-INH conjugate. The conjugate was then characterized using proton nuclear magnetic resonance (1HNMR), Fourier transform infrared spectroscopy (FTIR) as well as in vitro, cellular uptake and intracellular Mycobacterium tuberculosis (Mtb) antibacterial efficacy. The acid-labile hydrazone linkage conferred pH sensitivity to the inulin-INH conjugate with ~95, 77 and 65% of the drug released after 5 h at pH 4.5, 5.2, and 6.0 respectively. Cellular uptake studies confirm that RAW 264.7 monocytic cells efficiently internalized the inulin conjugates into endocytic compartments through endocytosis. The intracellular efficacy studies demonstrate that the inulin conjugates possess a dose-dependent targeting effect against Mtb-infected monocytes. This was through efficient internalization and cleavage of the hydrazone bond by the acidic environment of the lysosome, which subsequently released the isoniazid intracellularly to the Mtb reservoir. These results clearly suggest that inulin conjugates can serve as a pH-sensitive intracellular drug delivery system for TB treatment.

16.
Pharmaceutics ; 11(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336580

RESUMO

Inulin-based hydrogels are useful carriers for the delivery of drugs in the colon-targeted system and in other biomedical applications. In this project, inulin hydrogels were fabricated by crosslinking oxidized inulin with adipic acid dihydrazide (AAD) without the use of a catalyst or initiator. The physicochemical properties of the obtained hydrogels were further characterized using different techniques, such as swelling experiments, in vitro drug release, degradation, and biocompatibility tests. The crosslinking was confirmed with Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). In vitro releases of 5-fluorouracil (5FU) from the various inulin hydrogels was enhanced in acidic conditions (pH 5) compared with physiological pH (pH 7.4). In addition, blank gels did not show any appreciable cytotoxicity, whereas 5FU-loaded hydrogels demonstrated efficacy against HCT116 colon cancer cells, which further confirms the potential use of these delivery platforms for direct targeting of 5-FU to the colon.

17.
Pharmaceutics ; 11(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121836

RESUMO

The propensity of monocytes to migrate into sites of mycobacterium tuberculosis (TB) infection and then become infected themselves makes them potential targets for delivery of drugs intracellularly to the tubercle bacilli reservoir. Conventional TB drugs are less effective because of poor intracellular delivery to this bacterial sanctuary. This study highlights the potential of using semicrystalline delta inulin particles that are readily internalised by monocytes for a monocyte-based drug delivery system. Pyrazinoic acid was successfully attached covalently to the delta inulin particles via a labile linker. The formation of new conjugate and amide bond was confirmed using zeta potential, Proton Nuclear Magnetic Resonance (1HNMR) and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) confirmed that no significant change in size after conjugation which is an important parameter for monocyte targeting. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to establish the change in thermal properties. The analysis of in-vitro release demonstrated pH-triggered drug cleavage off the delta inulin particles that followed a first-order kinetic process. The efficient targeting ability of the conjugate for RAW 264.7 monocytic cells was supported by cellular uptake studies. Overall, our finding confirmed that semicrystalline delta inulin particles (MPI) can be modified covalently with drugs and such conjugates allow intracellular drug delivery and uptake into monocytes, making this system potentially useful for the treatment of TB.

18.
J Pharm Sci ; 108(2): 1007-1016, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30244012

RESUMO

Antimicrobial resistance at the infected site is a serious medical issue that increases patient morbidity and mortality. Silver has antibacterial activity associated with some dose-dependent toxicity. Silver nanoparticles, due to larger surface area, have antibacterial properties, which make them useful in the treatment of infections. Chitosan-stabilized silver nanoparticles (CH-AgNP) were formulated and evaluated for minimal inhibitory concentration and minimal bactericidal concentration testing against Staphylococcus aureus ATCC 29213, S aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, and 20 methicillin-resistant S aureus isolates. Minimum biofilm eradication concentration study was used to evaluate the biofilm reduction, and in vitro antimicrobial checkerboard assays were performed. The effective optimum ratio of AgNP:chitosan solution was 1:4. Minimal inhibitory concentration and minimal bactericidal concentration ranges of CH-AgNP were 4 to 14 times lower compared to AgNP alone against methicillin-resistant S aureus isolates. Minimum biofilm eradication concentration values of CH-AgNP for ATCC PA-01, P aeruginosa isolate 1, and P aeruginosa isolate 2 were found to be >84.59 µg/mL, 42.29 µg/mL, and 21.15 µg/mL, respectively. Thus, CH-AgNP is a potential formulation for wound treatment and management of infected sites associated with antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Nanopartículas Metálicas , Prata/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Quitosana/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
19.
Drug Deliv Transl Res ; 8(5): 1406-1420, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30117120

RESUMO

Curcumin (CUR), a natural polyphenolic compound, is considered as one of the most potential candidates against Alzheimer disease (AD) by targeting multiple pathologies such as amyloid-beta, tau phosphorylation, and oxidative stress. Poor physicochemical profile and oral bioavailability (BA) are the major contributors to its failure in clinical trials. Lack of success in numerous drug clinical trials for the treatment of AD urges the need of repositioning of CUR. To overcome its limitation and enhance oral BA, Novel CUR Formulation (NCF) was developed using self-nanomicellizing solid dispersion strategy which displayed 117-fold enhancement in oral BA of CUR. NCF was tested using SH-SY5Y695 APP human neuroblastoma cell line against the cytotoxicity induced by copper metal ion, H2O2, and Aß42 oligomer and compared with CUR control. The safety and efficacy of NCF on mice AD-like behavioral deficits (open field, novel objective recognition, Y-maze, and Morris water maze tests) were assessed in transgenic AD (APPSwe/PS1deE9) mice model. In SH-SY5Y695 APP human neuroblastoma cell line, NCF showed better safety and efficacy against the cytotoxicity due to the significantly enhancement of cellular uptake. It not only prevents the deterioration of cognitive functions of the aged APPSwe/PS1deE9 mice during aging but also reverses the cognitive functions to their much younger age which is also better than the currently available approved options. Moreover, NCF was proved as well tolerated with no appearance of any significant toxicity via oral administration. The results of the study demonstrated the potential of NCF to improve the efficacy of CUR without compromising its safety profile, and pave the way for clinical development for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Curcumina/administração & dosagem , Nanoestruturas/química , Administração Oral , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Linhagem Celular , Cobre/toxicidade , Curcumina/efeitos adversos , Curcumina/química , Modelos Animais de Doenças , Composição de Medicamentos , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Camundongos Transgênicos , Micelas , Fragmentos de Peptídeos/toxicidade
20.
Drug Des Devel Ther ; 12: 2051-2069, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013324

RESUMO

BACKGROUND: Edaravone (EDR) is known for its free radical scavenging, antiapoptotic, antinecrotic, and anticytokine effects in neurological and non-neurological diseases. It is currently available clinically as Radicava® and Radicut®, intravenous medications, recently approved for the treatment of amyotrophic lateral sclerosis and cerebral infarction. However, the oral use of EDR is still restricted by its poor oral bioavailability (BA) due to poor aqueous solubility, stability, rapid metabolism, and low permeability. The present study reports the development of novel EDR formulation (NEF) using self-nanomicellizing solid dispersion (SNMSD) strategy with the aim to enable its oral use. MATERIALS AND METHODS: The selection of a suitable carrier for the development of NEF was performed based on the miscibility study. The optimization of EDR-to-carrier ratio was conducted via kinetic solubility study after preparing SNMSDs using solvent evaporation technique. The drug-polymer carrier interaction and self-nanomicellizing properties of NEF were investigated with advanced characterization studies. In vitro permeation, metabolism, and dissolution study was carried out to examine the effect of the presence of a carrier on physico-chemical properties of EDR. Additionally, the dose-dependent pharmacokinetic study of NEF was conducted and compared with the EDR suspension. RESULTS: Soluplus® (SOL) as a carrier was selected based on the potential for improving aqueous solubility. The NEF containing EDR and SOL (1:5) resulted in the highest enhancement in aqueous solubility (17.53-fold) due to amorphization, hydrogen bonding interaction, and micellization. Moreover, the NEF demonstrated significant improvement in metabolism, permeability, and dissolution profile of EDR. Furthermore, the oral BA of NEF showed 10.2-, 16.1-, and 14.8-fold enhancement compared to EDR suspension at 46, 138, and 414 µmol/kg doses. CONCLUSION: The results demonstrated that SNMSD strategy could serve as a promising way to enhance EDR oral BA and NEF could be a potential candidate for the treatment of diseases in which oxidative stress plays a key role in their pathogenesis.


Assuntos
Edaravone/farmacocinética , Sequestradores de Radicais Livres/farmacocinética , Administração Oral , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Composição de Medicamentos , Edaravone/administração & dosagem , Edaravone/química , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/química , Humanos , Cinética , Polímeros/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA