Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
F1000Res ; 12: 49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811199

RESUMO

Background: Disruption of natural light cycles, as experienced by shift workers, is linked to enhanced cancer incidence. Several mouse models of cancer develop more severe disease when exposed to irregular light/dark cycles, supporting the connection between circadian disruption and increased cancer risk. Cryptochrome 2 (CRY2), a repressive component of the molecular circadian clock, facilitates turnover of the oncoprotein c-MYC, one mechanism that may link the molecular clock to tumorigenesis. In Eµ-MYC mice, which express transgenic c-MYC in B cells and develop aggressive lymphomas and leukemia, global Cry2 deletion reduces survival and enhances tumor formation. Lighting conditions that mimic the disruption experienced by shift workers dampen Cry2 transcripts in peripheral tissues of C57BL/6J mice. Although it is milder than homozygous deletion of Cry2, we hypothesized that reduced Cry2 rhythmicity could alter MYC protein accumulation and contribute to enhanced cancer risk caused by circadian disruption. We tested this hypothesis in MYC-driven lymphoma. Methods: We housed Eµ-MYC mice in light-tight boxes set to either control (continuous cycles of 12-hours of light followed by 12-hours of dark, LD12:12) or chronic jetlag (eight-hour light phase advances every two to three days, CJL) lighting conditions and assessed the impact of disrupted light cycles on survival and tumor formation in Eµ-MYC mice. Results: Environmental disruption of circadian rhythms did not alter tumor location, tumor growth, or survival in Eµ-MYC mice. Conclusions: Dampened rhythms of Cry2 following disruption of circadian light exposures is milder than deletion of Cry2. The lack of phenotype caused by altered circadian gene expression in contrast to enhanced tumorigenesis caused by homozygous deletion of Cry2 suggests that CRY2 dosage impacts this model. Importantly, these findings indicate that increased cancer risk associated with circadian disruption arises from one or more mechanisms that are not recapitulated here, and may be different in distinct tumor types.


Assuntos
Criptocromos , Linfoma , Camundongos , Animais , Homozigoto , Criptocromos/genética , Criptocromos/metabolismo , Camundongos Endogâmicos C57BL , Deleção de Sequência , Transformação Celular Neoplásica/genética , Linfoma/genética , Modelos Animais de Doenças
2.
Sci Adv ; 8(39): eabo1123, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170373

RESUMO

Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Carcinogênese/genética , Carcinógenos , Transformação Celular Neoplásica/genética , Fatores de Transcrição de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Mol Metab ; 61: 101504, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470095

RESUMO

OBJECTIVE: Exercise is a critical component of a healthy lifestyle and a key strategy for the prevention and management of metabolic disease. Identifying molecular mechanisms underlying adaptation in response to chronic physical activity is of critical interest in metabolic physiology. Circadian rhythms broadly modulate metabolism, including muscle substrate utilization and exercise capacity. Here, we define the molecular and physiological changes induced across the daily cycle by voluntary low intensity daily exercise. METHODS: Wildtype C57BL6/J male and female mice were housed with or without access to a running wheel for six weeks. Maximum running speed was measured at four different zeitgeber times (ZTs, hours after lights on) using either electrical or manual stimulation to motivate continued running on a motorized treadmill. RNA isolated from plantaris muscles at six ZTs was sequenced to establish the impact of daily activity on genome-wide transcription. Patterns of gene expression were analyzed using Gene Set Enrichment Analysis (GSEA) and Detection of Differential Rhythmicity (DODR). Blood glucose, lactate, and ketones, and muscle and liver glycogen were measured before and after exercise. RESULTS: We demonstrate that the use of mild electrical shocks to motivate running negatively impacts maximum running speed in mice, and describe a manual method to motivate running in rodent exercise studies. Using this method, we show that time of day influences the increase in exercise capacity afforded by six weeks of voluntary wheel running: when maximum running speed is measured at the beginning of the nighttime active period in mice, there is no measurable benefit from a history of daily voluntary running, while maximum increase in performance occurs at the end of the night. We show that daily voluntary exercise dramatically remodels the murine muscle circadian transcriptome. Finally, we describe daily rhythms in carbohydrate metabolism associated with the time-dependent response to moderate daily exercise in mice. CONCLUSIONS: Collectively, these data indicate that chronic nighttime physical activity dramatically remodels daily rhythms of murine muscle gene expression, which in turn support daily fluctuations in exercise performance.


Assuntos
Ritmo Circadiano , Condicionamento Físico Animal , Animais , Ritmo Circadiano/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo
4.
Cancer Discov ; 10(10): 1455-1464, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32934020

RESUMO

Circadian rhythms integrate many physiological pathways, helping organisms to align the timing of various internal processes to daily cycles in the external environment. Disrupted circadian rhythmicity is a prominent feature of modern society, and has been designated as a probable carcinogen. Here, we review multiple studies, in humans and animal models, that suggest a causal effect between circadian disruption and increased risk of cancer. We also discuss the complexity of this connection, which may depend on the cellular context. SIGNIFICANCE: Accumulating evidence points to an adverse effect of circadian disruption on cancer incidence and progression, indicating that time of day could influence the effectiveness of interventions targeting cancer prevention and management.


Assuntos
Ritmo Circadiano/fisiologia , Neoplasias/fisiopatologia , Humanos
5.
J Clin Invest ; 128(10): 4454-4471, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179226

RESUMO

The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatosis induced by chronic GC administration. Our results reveal a mechanism by which the circadian clock acts through REVERBa in liver on elements bound by HNF4A/HNF6 to direct GR action on energy metabolism.


Assuntos
Cromatina/metabolismo , Relógios Circadianos/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Glucocorticoides/efeitos adversos , Fígado/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Cromatina/genética , Cromatina/patologia , Relógios Circadianos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Glucocorticoides/farmacologia , Células HEK293 , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
6.
J Clin Invest ; 128(6): 2281-2296, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533925

RESUMO

Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBß in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBß alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.


Assuntos
Relógios Circadianos/imunologia , Ritmo Circadiano/imunologia , Homeostase/imunologia , Imunidade Inata , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/imunologia , Pneumonia/imunologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Homeostase/genética , Camundongos , Camundongos Transgênicos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Pneumonia/genética , Pneumonia/patologia , Proteólise , Sumoilação/genética , Sumoilação/imunologia
7.
PLoS One ; 10(3): e0119738, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780921

RESUMO

Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.


Assuntos
Estresse do Retículo Endoplasmático , Ensaios de Triagem em Larga Escala/métodos , Fator 2 Relacionado a NF-E2/metabolismo , eIF-2 Quinase/fisiologia , Animais , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/análise , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Fluorescência Verde/análise , Homeostase , Camundongos , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Tapsigargina/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
8.
Nat Med ; 20(8): 919-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25064128

RESUMO

The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.


Assuntos
Fatores de Transcrição ARNTL/imunologia , Quimiocina CXCL5/imunologia , Relógios Circadianos/imunologia , Glucocorticoides/farmacologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae , Fatores de Transcrição ARNTL/genética , Animais , Células Cultivadas , Quimiocina CXCL5/biossíntese , Ritmo Circadiano/fisiologia , Dexametasona/farmacologia , Células Epiteliais/imunologia , Humanos , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Proteínas Circadianas Period/imunologia , Pneumonia Pneumocócica/genética , Receptores de Glucocorticoides/imunologia , Uteroglobina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA