Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Eng Mater ; 1(11): 2916-2925, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38037666

RESUMO

A functionalized vanadyl(IV) acetylacetonate (acac) complex has been found to be a superior and highly effective antiwear agent, affording remarkable wear protection, compared to the current industry standard, zinc dialkyldithiophosphates (ZDDPs). Analysis of vanadium speciation and the depth profile of the active tribofilms by a combination of X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) analyses indicated a mixed-valence oxide composite, comprising V(III), V(IV), and V(V) species. A marked difference in composition between the bulk and the surfaces of the tribofilms was found. The vanadyl(VI) acac precursor has the potential to reduce or even replace ZDDP, which would represent a paradigm shift in the antiwear agent design. A major benefit relative to ZDDPs is the absence of S and P moieties, eliminating the potential for forming noxious and environmentally harmful byproducts of these elements.

2.
Inorg Chem ; 62(12): 4770-4785, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36916880

RESUMO

A family of zinc phosphate complexes supported by nitrogen donor-base ligands have been synthesized, and their molecular structures were identified in both the solid (X-ray crystallography) and solution state (DOSY NMR spectroscopy). [Zn{O2P(OPh)2}2]∞ (1), formed from the reaction of Zn[N(SiMe3)2]2 with HO(O)P(OPh)2 coordinates to donor-base ligands, i.e., pyridine (Py), 4-methylpyridine (4-MePy), 2,2-bipyridine (bipy), tetramethylethylenediamine (TMEDA), pentamethyldiethylenetriamine (PMDETA), and 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3-TAC), to produce polymeric 1D structures, [(Py)2Zn{O2P(OPh)2}2]∞ (2) and [(4-MePy)2Zn{O2P(OPh)2}2]∞ (3), the bimetalic systems, [(Bipy)Zn{O2P(OPh)2}2]2 (4), [(TMEDA)Zn{O2P(OPh)2}2]2 (5), and [(Me3-TAC)Zn{O2P(OPh)2}2]2 (7), as well as a mono-nuclear zinc bis-diphenylphosphate complex, [(PMDETA)Zn{O2P(OPh)2}2] (6). 1H NMR DOSY has been used to calculate averaged molecular weights of the species. Studies are consistent with the disassembly of polymeric 3 into the bimetallic species [(Me-Py)2·Zn2{O2P(OPh)2}4], where the Me-Py ligand is in rapid exchange with free Me-Py in solution. Further 1H DOSY NMR studies of 4 and 5 reveal that dissolution of the complex results in a monomer dimer equilibrium, i.e., [(Bipy)Zn{O2P(OPh)2}2]2 ⇆ 2[(Bipy)Zn{O2P(OPh)2}2] and [(TMEDA)Zn{O2P(OPh)2}2]2 ⇆ 2[(TMEDA)Zn{O2P(OPh)2}2], respectively, in which the equilibria lie toward formation of the monomer. As part of our studies, variable temperature 1H DOSY experiments (223 to 313 K) were performed upon 5 in d8-tol, which allowed us to approximate the enthalpy [ΔH = -43.2 kJ mol-1 (±3.79)], entropy [ΔS = 109 J mol-1 K-1 (±13.9)], and approximate Gibbs free energy [ΔG = 75.6 kJ mol-1 (±5.62) at 293 K)] of monomer-dimer equilibria. While complex 6 is shown to maintain its monomeric solid-state structure, 1H DOSY experiments of 7 at 298 K reveal two separate normalized diffusion coefficients consistent with the presence of the bimetallic species [(TAC)2-xZn2{O2P(OPh)2}4], (x = 1 or 0) and free TAC ligand.

3.
Inorg Chem ; 62(6): 2576-2591, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36708353

RESUMO

Analogous to the ubiquitous alkoxide ligand, metal boroxide and boryloxy complexes are an underexplored class of hard anionic O- ligand. A new series of amine-stabilized Li, Sn(II), and Zn boryloxy complexes, comprising electron-rich tetrahedral boron centers have been synthesized and characterized. All complexes have been characterized by one-dimensional (1D), two-dimensional (2D), and DOSY NMR, which are consistent with the solid-state structures unambiguously determined via single-crystal X-ray diffraction. Electron-rich µ2- (Sn and Zn) and µ3- (Li) boryloxy binding modes are observed. Compounds 6-9 are the first complexes of this class, with the chelating bis- and tris-phenol ligands providing a scaffold that can be easily functionalized and provides access to the boronic acid pro-ligand, hence allowing facile direct synthesis of the resulting compounds. Computational quantum chemical studies suggest a significant enhancement of the π-donor ability of the amine-stabilized boryloxy ligand because of electron donation from the amine functionality into the p-orbital of the boron atom.

4.
Inorg Chem ; 60(22): 17083-17093, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704441

RESUMO

In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N'-trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N' coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.

5.
Dalton Trans ; 50(39): 13902-13914, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528045

RESUMO

We have successfully prepared and structurally characterized a family of eight tin(II) heteroleptic complexes, [Sn(NR2)(ON)]x (NR2 = NMe2 (1a-d) or N(SiMe3)2 (2a-d); x = 1 or 2) and four homoleptic systems, [Sn(κ2-ON)2] (3a-d) from a series of aminoalcohols and fluorinated aminoalcohols (H{ON}) having a different number of methyl/trifluoromethyl substituents at the α-carbon atom, [HOC(R1)(R2)CH2NMe2] (R1 = R2 = H (H{dmae}) (a); R1 = H, R2 = Me (H{dmap}) (b); R1 = R2 = Me (H{dmamp}) (c); R1 = R2 = CF3 (H{Fdmamp}) (d)). The synthetic route used reactions of either [Sn{N(SiMe3)2}2] or [Sn(NMe2)2] with one or two equivalents of the aminoalcohols (a-d) in dry aprotic solvents leading to elimination of amines and formation of the Sn(II) species 1a-d, 2a-d and 3a-d respectively. All complexes were thoroughly characterized by NMR spectroscopy (1H, 13C, 19F, and 119Sn) as well as single-crystal X-ray diffraction studies. In all case the solid state molecular structures of the complexes have been unambiguously established: the solid state structures 1a-b and 1c are dimeric with central {Sn2N2} cores resulting from bridging {µ2-NMe2} units, in which the Sn(II) atoms are four-coordinate. In contrast, the solid state structures of complexes 1c and 2a-c possess similarly dimeric structures, with four-coordinate Sn(II) atoms, in which the oxygen atoms of the {ON} ligand bridge two Sn(II) centres to form dimers with a central {Sn2O2} core. Uniquely in this study, 2d, [Sn(κ2-O,N-OCMe2CH2NMe2){N(SiMe3)2}] is monomeric with a three coordinate Sn(II) centre. The homoleptic complexes 3a-d are all isostructural with monomeric four-coordinate structures with disphenoidal geometries. Solution state NMR studies reveal complicated ligand exchange processes in the case of the heteroleptic complexes 1a-d and 2a-d. Contrastingly, the homoleptic systems 3a-d show no such behaviour. While complexes 1a-d and 2a-d displayed either poor thermal stability or multistep thermal decomposition processes, the thermal behaviour of the homoleptic complexes, 3a-d, was investigated in order to determine the effects, if any, of the degree of fluorination and asymmetry of the aminoalkoxide ligands on the suitability of these complexes as ALD precursors for the deposition of SnO thin films.

6.
Inorg Chem ; 58(24): 16660-16666, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31746594

RESUMO

The syntheses of the triazenide complexes [{N(NDipp)2}2M] (Dipp = 2,6-di-isopropylphenyl; M = Ge(II) (1), Sn(II) (2), Pb(II) (3), and Te(II) (5)) are described for the first time. These compounds have been characterized by single-crystal X-ray diffraction and heteronuclear NMR spectroscopy. Density functional theory calculations were employed to confirm the presence and nature of the stereochemically active lone pairs in 1-5, alongside the Gibbs energy changes for their general synthesis, which enable the rationalization of observed reactivities.

7.
Inorg Chem ; 58(4): 2784-2797, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30715864

RESUMO

A family of 12 zinc(II) thoureide complexes, of the general form [{L}ZnMe], [{L}Zn{N(SiMe3)2}], and [{L}2Zn], have been synthesized by direct reaction of the thiourea pro-ligands iPrN(H)CS(NMe2) H[L1], CyN(H)CS(NMe2) H[L3], tBuN(H)CS(NMe2) H[L2], and MesN(H)CS(NMe2) H[L4] with either ZnMe2 (1:1) or Zn{N(SiMe3)2}2 (1:1 and 2:1) and characterized by elemental analysis, NMR spectroscopy, and thermogravimetric analysis (TGA). The molecular structures of complexes [{L1}ZnMe]2 (1), [{L2}ZnMe]2] (2), [{L3}ZnMe]∞ (3), [{L4}ZnMe]2] (4), [{L1}Zn{N(SiMe3)2}]2 (5), [{L2}Zn{N(SiMe3)2}]2 (6), [{L3}Zn{N(SiMe3)2}]2] (7), [{L4}Zn{N(SiMe3)2}]2] (8), [{L1}2Zn]2 (9), and [{L4}2Zn]2 (12) have been unambiguously determined using single crystal X-ray diffraction studies. Thermogravimetric analysis has been used to assess the viability of complexes 1-12 as single source precursors for the formation of ZnS. On the basis of TGA data compound 9 was investigated for its utility as a single source precursor to deposit ZnS films on silica-coated glass and crystalline silicon substrates at 150, 200, 250, and 300 °C using an aerosol assisted chemical vapor deposition (AACVD) method. The resultant films were confirmed to be hexagonal-ZnS by Raman spectroscopy and PXRD, and the surface morphologies were examined by SEM and AFM analysis. Thin films deposited from (9) at 250 and 300 °C were found to be comprised of more densely packed and more highly crystalline ZnS than films deposited at lower temperatures. The electronic properties of the ZnS thin films were deduced by UV-Vis spectroscopy to be very similar and displayed absorption behavior and band gap (Eg = 3.711-3.772 eV) values between those expected for bulk cubic-ZnS (Eg = 3.54 eV) and hexagonal-ZnS (Eg = 3.91 eV).

8.
Dalton Trans ; 47(23): 7721-7729, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29796508

RESUMO

SnO is a rare example of a stable p-type semiconductor material. Here, we describe the synthesis and characterisation of a family of Sn(ii) pyrrolide complexes for future application in the MOCVD and ALD of tin containing thin films. Reaction of the Sn(ii) amide complex, [{(Me3Si)2N}2Sn], with the N,N-bidentate pyrrole pro-ligand, L1H, forms the hetero- and homoleptic complexes [{L1}Sn{N(SiMe3)2}] (1) and [{L1}2Sn] (2), respectively, bearing the 2-dimethylaminomethyl-pyrrolide ligand (L1). Reaction of [{(Me3Si)2N)}2Sn] with the pyrrole-aldimine pro-ligands, L2H-L7H, results in the exclusive formation of the homoleptic bis-pyrrolide complexes [{L2-7}2Sn] (3-8). All complexes have been characterised by elemental analysis and NMR spectroscopy, and the molecular structures of complexes 1-5 and 8 are determined by single crystal X-ray diffraction. TG analysis and isothermal TG analysis have been used to evaluate the potential utility of these systems as MOCVD and ALD precursors.

9.
Dalton Trans ; 45(45): 18252-18258, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27801452

RESUMO

The stannous alkoxides [Sn(OR)2] [R = i-Pr, t-Bu, C(Et)Me2, CHPh2, CPh3] have been synthesised by reaction of Sn(NR'2)2 with two equivalents of HOR [R' = Me, R = i-Pr; R' = SiMe3, R = t-Bu, C(Et)Me2, CHPh2, CPh3]. Single crystal X-ray diffraction analysis of the bis(diphenylmethoxide) (4) and bis(triphenylmethoxide) (5) species have shown them to comprise three-coordinate Sn(ii) centres through dimerisation in the solid state with the alkoxide units adopting transoid and cisoid configurations across the {Sn2O2} cores respectively. Thermogravimetric analysis indicates clean decomposition and some evidence of volatility at temperatures >200 °C for all three aliphatic alkoxides, whereas both the diphenyl- and triphenylmethoxide compounds provide higher decomposition temperatures and, for the triphenylmethoxide derivative, a residual mass consistent with the formation of a carbon-containing residue. The previously reported iso-propoxide (1) and tert-butoxide (2) derivatives have been utilised in toluene solution to deposit SnO thin films by aerosol-assisted chemical vapour deposition (AACVD) on glass at temperatures between 300 and 450 °C. While SnO is deposited under hot wall conditions as the only identifiable phase by p-XRD and Raman spectroscopy for both precursors, morphological analysis by SEM reveals inferior substrate coverage in comparison to previously reported ureide-based precursor systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA