Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206121

RESUMO

The present work investigated the possibility to use wet blue (WB) leather wastes as natural reinforcing fibers within different polymer matrices. After their preparation and characterization, WB fibers were melt-mixed at 10 wt.% with poly(lactic acid) (PLA), polyamide 12 (PA12), thermoplastic elastomer (TPE), and thermoplastic polyurethane (TPU), and the obtained samples were subjected to rheological, thermal, thermo-mechanical, and viscoelastic analyses. In parallel, morphological properties such as fiber distribution and dispersion, fiber-matrix adhesion, and fiber exfoliation phenomena were analyzed through a scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) to evaluate the relationship between the compounding process, mechanical responses, and morphological parameters. The PLA-based composite exhibited the best results since the Young modulus (+18%), tensile strength (+1.5%), impact (+10%), and creep (+5%) resistance were simultaneously enhanced by the addition of WB fibers, which were well dispersed and distributed in and significantly branched and interlocked with the polymer matrix. PA12- and TPU-based formulations showed a positive behavior (around +47% of the Young modulus and +40% of creep resistance) even if the not-optimal fiber-matrix adhesion and/or the poor de-fibration of WB slightly lowered the tensile strength and elongation at break. Finally, the TPE-based sample exhibited the worst performance because of the poor affinity between hydrophilic WB fibers and the hydrophobic polymer matrix.

2.
Polymers (Basel) ; 13(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572866

RESUMO

Tanneries generate large amounts of solid and liquid wastes, which contain harmful chemical compounds in the environment, such as chromium, that is used in the tanning process. Until now, they have been almost completely dumped in landfills. Thus, finding eco-sustainable and innovative alternatives for the management and disposal of these wastes is becoming a huge challenge for tanneries and researchers around the world. In particular, the scientific and industrial communities have started using wastes to produce new materials exploiting the characteristics of leather, which are strongly connected with the macromolecular structure of its main component, collagen. None of the reviews on leather waste management actually present in the scientific literature report in detail the use of leather to make composite materials and the mechanical properties of the materials obtained, which are of fundamental importance for an effective industrial exploitation of leather scraps. This comprehensive review reports for the first time the state of the art of the strategies related to the recovery and valorization of both hydrolyzed collagen and leather waste for the realization of composite materials, reporting in detail the properties and the industrial applications of the materials obtained. In the conclusion section, the authors provide practical implications for industry in relation to sustainability and identify research gaps that can guide future authors and industries in their work.

3.
Polymers (Basel) ; 13(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530517

RESUMO

The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA