Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
PLoS One ; 19(4): e0296995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558084

RESUMO

Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.


Assuntos
Antimaláricos , Malária , Treonina-tRNA Ligase , Humanos , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Escherichia coli/genética , Relação Estrutura-Atividade , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Ácido Salicílico/farmacologia , RNA de Transferência
2.
ACS Med Chem Lett ; 15(1): 76-80, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229753

RESUMO

While Plasmodium falciparum threonyl tRNA synthetase (PfThrRS) has clearly been validated as a prospective antimalarial drug target, the number of known inhbitors of this enzyme is still limited. In order to expand the chemotypes acting as inhibitors of PfThrRS, a set of fragments were designed which incorporated bioisosteres of the N-acylphosphate moiety of the aminoacyladenylate as an intermediate of an enzymatic reaction. N-Acyl sulfamate- and N-acyl benzenethiazolsulfonamide-based fragments 9a and 9k were identified as inhibitors of the PfThrRSby biochemical assay at 100 µM concentration. These fragments were then developed into potent PfThrRS inhibitors (10a,b and 11) by linking them with an amino pyrimidine as a bioisostere of adenine in the enzymatic reaction intermediate.

3.
J Phys Chem B ; 127(42): 9095-9101, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37843472

RESUMO

PAP248-286 is a fusogenic peptide derived from prostatic acid phosphatase, commonly found in human semen, and is known to mediate HIV fusion with cell membranes. In this study, we performed 120 independent coarse-grained molecular dynamics simulations to investigate the spontaneous binding of PAP248-286 monomers, considering both charged and neutral histidine (His) residues, to membrane bilayers composed of different lipid compositions: 100% POPC, 70% POPC-30% POPG, and 50% POPC-50% POPG. Our simulations revealed that PAP248-286 displayed spontaneous binding to the membrane, with increased binding observed in the presence of anionic lipid POPG. Specifically, in systems containing 30% and 50% POPG lipids, monomer residues, particularly in the systems containing charged histidine (His) residues, exhibited prolonged binding with the membrane. Furthermore, our simulations indicated that PAP248-286 adopted a parallel orientation with the membrane, exposing its positively charged residues to the lipid bilayer. Interestingly, systems containing charged His residues showed a higher lipid occupancy around the peptide. These findings are consistent with previous experimental data, suggesting that PAP248-286 binding is enhanced in membranes with charged His residues, resembling the conditions found in the acidic vaginal pH environment. The results of our study provide further insights into the molecular mechanisms underlying the membrane binding of PAP248-286, contributing to our understanding of its potential role in HIV fusion and infection.


Assuntos
Infecções por HIV , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Histidina , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química
4.
Sci Rep ; 13(1): 18610, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903872

RESUMO

Fructosyl peptide oxidases (FPOX) are deglycating enzymes that find application as key enzymatic components in diabetes monitoring devices. Indeed, their use with blood samples can provide a measurement of the concentration of glycated hemoglobin and glycated albumin, two well-known diabetes markers. However, the FPOX currently employed in enzymatic assays cannot directly detect whole glycated proteins, making it necessary to perform a preliminary proteolytic treatment of the target protein to generate small glycated peptides that can act as viable substrates for the enzyme. This is a costly and time consuming step. In this work, we used an in silico protein engineering approach to enhance the overall thermal stability of the enzyme and to improve its catalytic activity toward large substrates. The final design shows a marked improvement in thermal stability relative to the wild type enzyme, a distinct widening of its access tunnel and significant enzymatic activity towards a range of glycated substrates.


Assuntos
Diabetes Mellitus , Peptídeos , Humanos , Engenharia de Proteínas , Peptídeo Hidrolases , Albumina Sérica
5.
Mol Ther Nucleic Acids ; 33: 871-884, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680989

RESUMO

Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets ß1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to ß1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing ß1-integrin.

6.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631320

RESUMO

Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.

7.
Org Biomol Chem ; 21(26): 5433-5439, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37335076

RESUMO

An analogue of a toxic moiety (TM84) of natural product agrocin 84 containing threonine amide instead of 2,3-dihydroxy-4-methylpentanamide was prepared and evaluated as a putative Plasmodium falciparum threonyl t-RNA synthetase (PfThrRS) inhibitor. This TM84 analogue features submicromolar inhibitory potency (IC50 = 440 nM) comparable to that of borrelidin (IC50 = 43 nM) and therefore complements chemotypes known to inhibit malarial PfThrRS, which are currently limited to borrelidin and its analogues. The crystal structure of the inhibitor in complex with the E. coli homologue enzyme (EcThrRS) was obtained, revealing crucial ligand-protein interactions that will pave the way for the design of novel ThrRS inhibitors.


Assuntos
Treonina-tRNA Ligase , Escherichia coli , Nucleotídeos de Adenina
8.
Comput Struct Biotechnol J ; 21: 2688-2695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143763

RESUMO

Alzheimer's disease is the most common form of dementia. Its aetiology is characterized by the misfolding and aggregation of amyloid-ß (Aß) peptides into ß-sheet-rich Aß oligomers/fibrils. Although multiple experimental studies have suggested that Aß oligomers/fibrils interact with the cell membranes and perturb their structures and dynamics, the molecular mechanism of this interaction is still not fully understood. In the present work, we have performed a total of 120 µs-long simulations to investigate the interaction between trimeric or hexameric Aß1-40 fibrils with either a 100% DPPC bilayer, a 70% DPPC-30% cholesterol bilayer or a 50% DPPC-50% cholesterol bilayer. Our simulation data capture the spontaneous binding of the aqueous Aß1-40 fibrils with the membranes and show that the central hydrophobic amino acid cluster, the lysine residue adjacent to it and the C-terminal hydrophobic residues are all involved in the process. Moreover, our data show that while the Aß1-40 fibril does not bind to the 100% DPPC bilayer, its binding affinity for the membrane increases with the amount of cholesterol. Overall, our data suggest that two clusters of hydrophobic residues and one lysine help Aß1-40 fibrils establish stable interactions with a cholesterol-rich DPPC bilayer. These residues are likely to represent potential target regions for the design of inhibitors, thus opening new avenues in structure-based drug design against Aß oligomer/fibril-membrane interaction.

9.
Eur J Med Chem ; 246: 115003, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493617

RESUMO

Since the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series. Docking analysis using FLAP suggests that for hits to leads, binding mostly involves an interaction with the Mg2+ cofactor, or its destabilization. The most active compounds of the two series are capable of inducing apoptosis following the mitochondrial pathway and to significantly reduce the expression of anti-apoptotic proteins such as the Mcl-1. The fluorescence properties of the compounds of the PL library allowed the tracking of their mode of action, while PAINS (Pan Assays Interference Structures) filtration databases suggest the lack of any unspecific biological response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Colina/metabolismo , Colina/farmacologia , Colina Quinase , Proliferação de Células , Antineoplásicos/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia
10.
Comput Struct Biotechnol J ; 20: 4892-4901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147683

RESUMO

PAP248-286 peptides, which are highly abundant in human semen, aggregate and form amyloid fibrils that enhance HIV infection. Previous experimental studies have shown that the infection-promoting activity of PAP248-286 begins to increase well before amyloid formation takes place and that pH plays a key role in the enhancement of PAP248-286-related infection. Hence, understanding the early stages of misfolding of the PAP2482-86 peptide is crucial. To this end, we have performed 60 independent MD simulations for a total of 24 µs at two different pH values (4.2 and 7.2). Our data shows that early stages of misfolding of the PAP248-286 peptide is a multistage process and that the first step of the process is a transition from an "I-shaped" structure to a "U-shaped" structure. We further observed that the structure of PAP248-286 at the two different pH values shows significantly different features. At pH 4.2, the peptide has less intra-molecular H-bonds and a reduced α-helical content than at pH 7.2. Moreover, differences in intra-peptide residues contacts are also observed at the two pH values. Finally, free energy landscape analysis shows that there are more local minima in the energy surface of the peptide at pH 7.2 than at pH 4.2. Overall, the present study elucidates the early stages of misfolding of the PAP248-286 peptide at the atomic level, thus possibly opening new avenues in structure-based drug discovery against HIV infection.

11.
Front Chem ; 10: 946087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059878

RESUMO

Cadherins promote cell-cell adhesion by forming homophilic interactions via their N-terminal extracellular domains. Hence, they have broad-ranging physiological effects on tissue organization and homeostasis. When dysregulated, cadherins contribute to different aspects of cancer progression and metastasis; therefore, targeting the cadherin adhesive interface with small-molecule antagonists is expected to have potential therapeutic and diagnostic value. Here, we used molecular docking simulations to evaluate the propensity of three different libraries of commercially available drug-like fragments (nearly 18,000 compounds) to accommodate into the Trp2 binding pocket of E-cadherin, a crucial site for the orchestration of the protein's dimerization mechanism. Top-ranked fragments featuring five different aromatic chemotypes were expanded by means of a similarity search on the PubChem database (Tanimoto index >90%). Of this set, seven fragments containing an aromatic scaffold linked to an aliphatic chain bearing at least one amine group were finally selected for further analysis. Ligand-based NMR data (Saturation Transfer Difference, STD) and molecular dynamics simulations suggest that these fragments can bind E-cadherin mostly through their aromatic moiety, while their aliphatic portions may also diversely engage with the mobile regions of the binding site. A tetrahydro-ß-carboline scaffold functionalized with an ethylamine emerged as the most promising fragment.

12.
Pharmaceutics ; 14(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35456549

RESUMO

Due to its role in lipid biosynthesis, choline kinase α1 (CKα1) is an interesting target for the development of new antitumor agents. In this work, we present a series of 41 compounds designed based on the well-known and successful strategy of introducing thienopyridine and pyrimidine as bioisosteres of other heterocycles in active antitumor compounds. Notwithstanding the fact that some of these compounds do not show significant enzymatic inhibition, others, in contrast, feature substantially improved enzymatic and antiproliferative inhibition values. This is also confirmed by docking analysis, whereby compounds with longer linkers and thienopyrimidine cationic head have been identified as the most compelling. Among the best compounds is Ff-35, which inhibits the growth of different tumor cells at submicromolar concentrations. Moreover, Ff-35 is more potent in inhibiting CKα1 than other previous biscationic derivatives. Treatment of A549, Hela, and MDA-MB-231 cells with Ff-35 results in their arrest at the G1 phase of the cell cycle. Furthermore, the compound induces cellular apoptosis in a concentration-dependent manner. Altogether, these findings indicate that Ff-35 is a promising new chemotherapeutic agent with encouraging preclinical potential.

13.
Front Mol Biosci ; 9: 841777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425809

RESUMO

Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and ß-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.

14.
Pharmaceutics ; 14(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214160

RESUMO

A large number of different types of cancer have been shown to be associated with an abnormal metabolism of phosphatidylcholine (PC), the main component of eukaryotic cell membranes. Indeed, the overexpression of choline kinase α1 (ChoKα1), the enzyme that catalyses the bioconversion of choline to phosphocholine (PCho), has been found to associate with cell proliferation, oncogenic transformation and carcinogenesis. Hence, ChoKα1 has been described as a possible cancer therapeutic target. Moreover, the choline transporter CTL1 has been shown to be highly expressed in several tumour cell lines. In the present work, we evaluate the antiproliferative effect of PL48, a rationally designed inhibitor of ChoKα1, in MCF7 and HepG2 cell lines. In addition, we illustrate that the predominant mechanism of cellular choline uptake in these cells is mediated by the CTL1 choline transporter. A possible correlation between the inhibition of both choline uptake and ChoKα1 activity and cell proliferation in cancer cell lines is also highlighted. We conclude that the efficacy of this inhibitor on cell proliferation in both cell lines is closely correlated with its capability to block choline uptake and ChoKα1 activity, making both proteins potential targets in cancer therapy.

15.
Methods Mol Biol ; 2397: 203-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34813066

RESUMO

Enzyme engineering is a tailoring process that allows the modification of naturally occurring enzymes to provide them with improved catalytic efficiency, stability, or specificity. By introducing partial modifications to their sequence and to their structural features, enzyme engineering can transform natural enzymes into more efficient, specific and resistant biocatalysts and render them suitable for virtually countless industrial processes. Current enzyme engineering methods mostly target the active site of the enzyme, where the catalytic reaction takes place. Nonetheless, the tunnel that often connects the surface of an enzyme with its buried active site plays a key role in the activity of the enzyme as it acts as a gatekeeper and regulates the access of the substrate to the catalytic pocket. Hence, there is an increasing interest in targeting the sequence and the structure of substrate entrance tunnels in order to fine-tune enzymatic activity, regulate substrate specificity, or control reaction promiscuity.In this chapter, we describe the use of a rational in silico design and screening method to engineer the access tunnel of a fructosyl peptide oxidase with the aim to facilitate access to its catalytic site and to expand its substrate range. Our goal is to engineer this class of enzymes in order to utilize them for the direct detection of glycated proteins in diabetes monitoring devices. The design strategy involves remodeling of the backbone structure of the enzyme , a feature that is not possible with conventional enzyme engineering techniques such as single-point mutagenesis and that is highly unlikely to occur using a directed evolution approach.The proposed strategy, which results in a significant reduction in cost and time for the experimental production and characterization of candidate enzyme variants, represents a promising approach to the expedited identification of novel and improved enzymes. Rational enzyme design aims to provide in silico strategies for the fast, accurate, and inexpensive development of biocatalysts that can meet the needs of multiple industrial sectors, thus ultimately promoting the use of green chemistry and improving the efficiency of chemical processes.


Assuntos
Engenharia de Proteínas , Biocatálise , Catálise , Domínio Catalítico , Especificidade por Substrato
16.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834257

RESUMO

In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target.

17.
Eur J Med Chem ; 223: 113638, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171658

RESUMO

Memory and cognitive functions depend on the cerebral levels of cyclic adenosine monophosphate (cAMP), which are regulated by the phosphodiesterase 4 (PDE4) family of enzymes. Selected rolipram-related PDE4 inhibitors, members of the GEBR library, have been shown to increase hippocampal cAMP levels, providing pro-cognitive benefits with a safe pharmacological profile. In a recent SAR investigation involving a subset of GEBR library compounds, we have demonstrated that, depending on length and flexibility, ligands can either adopt a twisted, an extended or a protruding conformation, the latter allowing the ligand to form stabilizing contacts with the regulatory domain of the enzyme. Here, based on those findings, we describe further chemical modifications of the protruding subset of GEBR library inhibitors and their effects on ligand conformation and potency. In particular, we demonstrate that the insertion of a methyl group in the flexible linker region connecting the catechol portion and the basic end of the molecules enhances the ability of the ligand to interact with both the catalytic and the regulatory domains of the enzyme.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Desenho de Fármacos , Inibidores da Fosfodiesterase 4/síntese química , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Humanos , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
18.
Biotechnol Bioeng ; 117(12): 3688-3698, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32797625

RESUMO

Fructosyl peptide oxidases (FPOXs) are enzymes currently used in enzymatic assays to measure the concentration of glycated hemoglobin and albumin in blood samples, which serve as biomarkers of diabetes. However, since FPOX are unable to work directly on glycated proteins, current enzymatic assays are based on a preliminary proteolytic digestion of the target proteins. Herein, to improve the speed and costs of the enzymatic assays for diabetes testing, we applied a rational design approach to engineer a novel enzyme with a wider access tunnel to the catalytic site, using a combination of Rosetta design and molecular dynamics simulations. Our final design, L3_35A, shows a significantly wider and shorter access tunnel, resulting from the deletion of five-amino acids lining the gate structures and from a total of 35 point mutations relative to the wild-type (WT) enzyme. Indeed, upon experimental testing, our engineered enzyme shows good structural stability and maintains significant activity relative to the WT.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Domínio Catalítico , Estabilidade Enzimática
19.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 4): 160-167, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32254049

RESUMO

Human O-phosphoethanolamine phospho-lyase (hEtnppl; EC 4.2.3.2) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the degradation of O-phosphoethanolamine (PEA) into acetaldehyde, phosphate and ammonia. Physiologically, the enzyme is involved in phospholipid metabolism, as PEA is the precursor of phosphatidylethanolamine in the CDP-ethanolamine (Kennedy) pathway. Here, the crystal structure of hEtnppl in complex with pyridoxamine 5'-phosphate was determined at 2.05 Šresolution by molecular replacement using the structure of A1RDF1 from Arthrobacter aurescens TC1 (PDB entry 5g4i) as the search model. Structural analysis reveals that the two proteins share the same general fold and a similar arrangement of active-site residues. These results provide novel and useful information for the complete characterization of the human enzyme.


Assuntos
Carbono-Oxigênio Liases/química , Domínio Catalítico , Cristalografia por Raios X , Cistina Difosfato/análogos & derivados , Cistina Difosfato/química , Etanolaminas/química , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Fosfato de Piridoxal/química
20.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093112

RESUMO

Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE). In recent years, GEBR-32a has been shown to possess selective inhibitory properties against PDE type 4 family members, resulting in an improvement in spatial memory processes without the typical side effects that are usually correlated with this mechanism of action. In this work, we performed the HPLC chiral resolution and absolute configuration assignment of GEBR-32a. We developed an efficient analytical and semipreparative chromatographic method exploiting an amylose-based stationary phase, we studied the chiroptical properties of both enantiomers and we assigned their absolute configuration by 1H-NMR (nuclear magnetic resonance). Lastly, we measured the IC50 values of both enantiomers against both the PDE4D catalytic domain and the long PDE4D3 isoform. Results strongly support the notion that GEBR-32a inhibits the PDE4D enzyme by interacting with both the catalytic pocket and the regulatory domains.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Inibidores da Fosfodiesterase 4/química , Humanos , Ressonância Magnética Nuclear Biomolecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA