Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioinform Adv ; 4(1): vbae071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827412

RESUMO

Motivation: Alternative splicing (AS) is a key regulatory mechanism that confers genetic diversity and phenotypic plasticity of human. The exons and their flanking regions include comprehensive junction-incorporating sequence features like splicing factor-binding sites and protein domains. These elements involve in exon usage and finally contribute to isoform-specific biological functions. Splicing-associated sequence features are involved in the multilayered regulation encompassing DNA and proteins. However, most analysis applications have investigated limited sequence features, like protein domains. It is insufficient to explain the comprehensive cause and effect of exon-specific biological processes. Results: With the advent of RNA-seq technology, global AS event analysis has deduced more precise results. As accumulating analysis results, it could be a challenge to identify multi-omics sequence features for AS events. Therefore, application to investigate multi-omics sequence features is useful to scan critical evidence. ASpedia-R is an R package to interrogate junction-incorporating sequence features for human genes. Our database collected the heterogeneous profile encompassed from DNA to protein. Additionally, knowledge-based splicing genes were collected using text-mining to test the association with specific pathway terms. Our package retrieves AS events for high-throughput data analysis results via AS event ID converter. Finally, result profile could be visualized and saved to multiple formats: sequence feature result table, genome track figure, protein-protein interaction network, and gene set enrichment test result table. Our package is a convenient tool to understand global regulation mechanisms by splicing. Availability and implementation: The package source code is freely available to non-commercial users at https://github.com/ncc-bioinfo/ASpedia-R.

2.
Cancers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398169

RESUMO

Intratumor heterogeneity leads to different responses to targeted therapies, even within patients whose tumors harbor identical driver oncogenes. This study examined clinical outcomes according to a patient-derived cell (PDC)-based drug sensitivity test in lung cancer patients treated with targeted therapies. From 487 lung cancers, 397 PDCs were established with a success rate of 82%. In 139 PDCs from advanced non-small-cell lung cancer (NSCLC) patients receiving targeted therapies, the standardized area under the curve (AUC) values for the drugs was significantly correlated with their tumor response (p = 0.002). Among 59 chemo-naive EGFR/ALK-positive NSCLC patients, the PDC non-responders showed a significantly inferior response rate (RR) and progression-free survival (PFS) for the targeted drugs than the PDC responders (RR, 25% vs. 78%, p = 0.011; median PFS, 3.4 months [95% confidence interval (CI), 2.8-4.1] vs. 11.8 months [95% CI, 6.5-17.0], p < 0.001). Of 25 EGFR-positive NSCLC patients re-challenged with EGFR inhibitors, the PDC responder showed a higher RR than the PDC non-responder (42% vs. 15%). Four patients with wild-type EGFR or uncommon EGFR-mutant NSCLC were treated with EGFR inhibitors based on their favorable PDC response to EGFR inhibitors, and two patients showed dramatic responses. Therefore, the PDC-based drug sensitivity test results were significantly associated with clinical outcomes in patients with EGFR- or ALK-positive NSCLC. It may be helpful for predicting individual heterogenous clinical outcomes beyond genomic alterations.

3.
Cancer Res Treat ; 56(1): 70-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340841

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have greatly improved survival in EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC); however, their effects on the tumor microenvironment (TME) are unknown. We assessed the changes induced by neoadjuvant erlotinib therapy (NE) in the TME of operable EGFRm NSCLC. MATERIALS AND METHODS: This was a single-arm phase II trial for neoadjuvant/adjuvant erlotinib therapy in patients with stage II/IIIA EGFRm NSCLC (EGFR exon 19 deletion or L858R mutations). Patients received up to 2 cycles of NE (150 mg/day) for 4 weeks, followed by surgery and adjuvant erlotinib or vinorelbine plus cisplatin therapy depending on observed NE response. TME changes were assessed based on gene expression analysis and mutation profiling. RESULTS: A total of 26 patients were enrolled; the median age was 61, 69% were female, 88% were stage IIIA, and 62% had L858R mutation. Among 25 patients who received NE, the objective response rate was 72% (95% confidence interval [CI], 52.4 to 85.7). The median disease-free and overall survival (OS) were 17.9 (95% CI, 10.5 to 25.4) and 84.7 months (95% CI, 49.7 to 119.8), respectively. Gene set enrichment analysis in resected tissues revealed upregulation of interleukin, complement, cytokine, transforming growth factor ß, and hedgehog pathways. Patients with upregulated pathogen defense, interleukins, and T-cell function pathways at baseline exhibited partial response to NE and longer OS. Patients with upregulated cell cycle pathways at baseline exhibited stable/progressive disease after NE and shorter OS. CONCLUSION: NE modulated the TME in EGFRm NSCLC. Upregulation of immune-related pathways was associated with better outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cloridrato de Erlotinib/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia Neoadjuvante , Microambiente Tumoral , Estadiamento de Neoplasias , Proteínas Hedgehog/genética , Proteínas Hedgehog/uso terapêutico , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
4.
J Thromb Haemost ; 22(3): 834-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072375

RESUMO

BACKGROUND: Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES: In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS: Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS: Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION: We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.


Assuntos
Megacariócitos , Trombocitopenia , Animais , Camundongos , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Megacariócitos/metabolismo , Estresse Oxidativo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Trombocitopenia/metabolismo
5.
Cancers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760429

RESUMO

This study aimed to investigate whether cyclophosphamide (C) and adriamycin (A) induction therapy (IT) prior to nivolumab could enhance the efficacy of nivolumab in previously treated patients with non-squamous (NSQ) non-small-cell lung cancer (NSCLC) with less than 10% programmed death-ligand 1 (PD-L1) expression. Twenty-two enrolled patients received four cycles of CA-IT every 3 weeks. Nivolumab was given 360 mg every 3 weeks from the second cycle and 480 mg every 4 weeks after four cycles of CA-IT. The median progression-free survival (PFS) and overall survival (OS) were 2.4 months and 11.6 months, respectively. Fluorescence-activated cell sorting revealed the lowest ratio of myeloid-derived suppressor cells (MDSCs) to CD8+T-cells in the responders. Proteomic analysis identified a consistent upregulation of extracellular matrix-receptor interactions and phagosome pathways in the responders. Among the differentially expressed proteins, the transferrin receptor protein (TFRC) was higher in the responders before treatment (fold change > 1.2). TFRC validation with an independent cohort showed the prognostic significance of either OS or PFS in patients with low PD-L1 expression. In summary, CA-IT did not improve nivolumab efficacy in NSQ-NSCLCs with low PD-L1 expression; however, it induced decreasing MDSC, resulting in a durable response. Higher baseline TFRC levels predicted a favorable response to nivolumab in NSCLC with low PD-L1 expression.

6.
Cancers (Basel) ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37509231

RESUMO

Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their clinical relevance and therapeutic implications are not fully understood. Thus, we aimed to refine molecular subtypes and to uncover therapeutic targets. We classified the subtypes based on gene expression (n = 81) and validated them in our samples (n = 87). Non-SCLC samples were compared with SCLC subtypes to identify the early development stage of SCLC. Single-cell transcriptome analysis was applied to dissect the TME of bulk samples. Finally, to overcome platinum resistance, we performed drug screening of patient-derived cells and cell lines. Four subtypes were identified: the ASCL1+ (SCLC-A) subtype identified as TP53/RB-mutated non-SCLC representing the early development stage of SCLC; the immune activation (SCLC-I) subtype, showing high CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); the NEUROD1 (SCLC-N) subtype, which showed neurotransmission process; and the POU2F3+ (SCLC-P) subtype with epithelial-to-mesenchymal transition (EMT). EndMT was associated with the worst prognosis. While SCLC-A/N exhibited platinum sensitivity, the EndMT signal of SCLC-I conferred platinum resistance. A BET inhibitor suppressed the aggressive angiogenesis phenotype of SCLC-I. We revealed that EndMT development contributed to a poor outcome in SCLC-I. Moreover, heterogenous TME development facilitated platinum resistance. BET inhibitors are novel candidates for overcoming platinum resistance.

7.
Gastroenterology ; 164(7): 1293-1309, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36898552

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS: Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS: Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS: This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteogenômica , Humanos , Proteômica , Prognóstico , Colangiocarcinoma/genética , Colangiocarcinoma/cirurgia , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia
8.
Comput Struct Biotechnol J ; 21: 1978-1988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942103

RESUMO

Alternative splicing (AS) events modulate certain pathways and phenotypic plasticity in cancer. Although previous studies have computationally analyzed splicing events, it is still a challenge to uncover biological functions induced by reliable AS events from tremendous candidates. To provide essential splicing event signatures to assess pathway regulation, we developed a database by collecting two datasets: (i) reported literature and (ii) cancer transcriptome profile. The former includes knowledge-based splicing signatures collected from 63,229 PubMed abstracts using natural language processing, extracted for 202 pathways. The latter is the machine learning-based splicing signatures identified from pan-cancer transcriptome for 16 cancer types and 42 pathways. We established six different learning models to classify pathway activities from splicing profiles as a learning dataset. Top-ranked AS events by learning model feature importance became the signature for each pathway. To validate our learning results, we performed evaluations by (i) performance metrics, (ii) differential AS sets acquired from external datasets, and (iii) our knowledge-based signatures. The area under the receiver operating characteristic values of the learning models did not exhibit any drastic difference. However, random-forest distinctly presented the best performance to compare with the AS sets identified from external datasets and our knowledge-based signatures. Therefore, we used the signatures obtained from the random-forest model. Our database provided the clinical characteristics of the AS signatures, including survival test, molecular subtype, and tumor microenvironment. The regulation by splicing factors was additionally investigated. Our database for developed signatures supported retrieval and visualization system.

9.
J Exp Clin Cancer Res ; 42(1): 37, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717865

RESUMO

BACKGROUND: A pharmacogenomic platform using patient-derived cells (PDCs) was established to identify the underlying resistance mechanisms and tailored treatment for patients with advanced or refractory lung cancer. METHODS: Drug sensitivity screening and multi-omics datasets were acquired from lung cancer PDCs (n = 102). Integrative analysis was performed to explore drug candidates according to genetic variants, gene expression, and clinical profiles. RESULTS: PDCs had genomic characteristics resembled with those of solid lung cancer tissues. PDC molecular subtyping classified patients into four groups: (1) inflammatory, (2) epithelial-to-mesenchymal transition (EMT)-like, (3) stemness, and (4) epithelial growth factor receptor (EGFR)-dominant. EGFR mutations of the EMT-like subtype were associated with a reduced response to EGFR-tyrosine kinase inhibitor therapy. Moreover, although RB1/TP53 mutations were significantly enriched in small-cell lung cancer (SCLC) PDCs, they were also present in non-SCLC PDCs. In contrast to its effect in the cell lines, alpelisib (a PI3K-AKT inhibitor) significantly inhibited both RB1/TP53 expression and SCLC cell growth in our PDC model. Furthermore, cell cycle inhibitors could effectively target SCLC cells. Finally, the upregulation of transforming growth factor-ß expression and the YAP/TAZ pathway was observed in osimertinib-resistant PDCs, predisposing them to the EMT-like subtype. Our platform selected XAV939 (a WNT-TNKS-ß-catenin inhibitor) for the treatment of osimertinib-resistant PDCs. Using an in vitro model, we further demonstrated that acquisition of osimertinib resistance enhances invasive characteristics and EMT, upregulates the YAP/TAZ-AXL axis, and increases the sensitivity of cancer cells to XAV939. CONCLUSIONS: Our PDC models recapitulated the molecular characteristics of lung cancer, and pharmacogenomics analysis provided plausible therapeutic candidates.


Assuntos
Neoplasias Pulmonares , Farmacogenética , Humanos , Fosfatidilinositol 3-Quinases/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Mutação , Transição Epitelial-Mesenquimal/genética
10.
Genomics Proteomics Bioinformatics ; 20(3): 466-482, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085775

RESUMO

Alternative splicing (AS) regulates biological processes governing phenotypes and diseases. Differential AS (DAS) gene test methods have been developed to investigate important exonic expression from high-throughput datasets. However, the DAS events extracted using statistical tests are insufficient to delineate relevant biological processes. In this study, we developed a novel application, Alternative Splicing Encyclopedia: Functional Interaction (ASpediaFI), to systemically identify DAS events and co-regulated genes and pathways. ASpediaFI establishes a heterogeneous interaction network of genes and their feature nodes (i.e., AS events and pathways) connected by co-expression or pathway gene set knowledge. Next, ASpediaFI explores the interaction network using the random walk with restart algorithm and interrogates the proximity from a query gene set. Finally, ASpediaFI extracts significant AS events, genes, and pathways. To evaluate the performance of our method, we simulated RNA sequencing (RNA-seq) datasets to consider various conditions of sequencing depth and sample size. The performance was compared with that of other methods. Additionally, we analyzed three public datasets of cancer patients or cell lines to evaluate how well ASpediaFI detects biologically relevant candidates. ASpediaFI exhibits strong performance in both simulated and public datasets. Our integrative approach reveals that DAS events that recognize a global co-expression network and relevant pathways determine the functional importance of spliced genes in the subnetwork. ASpediaFI is publicly available at https://bioconductor.org/packages/ASpediaFI.


Assuntos
Algoritmos , Processamento Alternativo , Análise de Sequência de RNA/métodos , Éxons , Sequência de Bases , Perfilação da Expressão Gênica/métodos
11.
NPJ Precis Oncol ; 6(1): 9, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087207

RESUMO

Single-cell transcriptomic profiles analysis has proposed new insights for understanding the behavior of human gastric cancer (GC). GC offers a unique model of intratumoral heterogeneity. However, the specific classes of cells involved in carcinogenetic passage, and the tumor microenvironment of stromal cells was poorly understood. We characterized the heterogeneous cell population of precancerous lesions and gastric cancer at the single-cell resolution by RNA sequencing. We identified 10 gastric cell subtypes and showed the intestinal and diffuse-type cancer were characterized by different cell population. We found that the intestinal and diffuse-type cancer cells have the differential metaplastic cell lineages: intestinal-type cancer cells differentiated along the intestinal metaplasia lineage while diffuse-type cancer cells resemble de novo pathway. We observed an enriched CCND1 mutation in premalignant disease state and discovered cancer-associated fibroblast cells harboring pro-stemness properties. In particular, tumor cells could be categorized into previously proposed molecular subtypes and harbored specific subtype of malignant cell with high expression level of epithelial-myofibroblast transition which was correlated with poor clinical prognosis. In addition to intratumoral heterogeneity, the analysis revealed different cellular lineages were responsible for potential carcinogenetic pathways. Single-cell transcriptomes analysis of gastric pre-cancerous lesions and cancer may provide insights for understanding GC cell behavior, suggesting potential targets for the diagnosis and treatment of GC.

12.
Cancers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771636

RESUMO

The role of SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, in genomic organization is well studied in various cancer types. However, its oncogenic role and therapeutic implications are relatively unknown in triple-negative breast cancer (TNBC). We investigated the clinical implication and downstream regulation induced by SMARCA4 inactivation using large-scale genome and transcriptome profiles. Additionally, SMARCA4 was knocked out in MDA-MB-468 and MDA-MB-231 using CRISPR/Cas9 to identify gene regulation and a targetable pathway. First, we observed an increase in SMARCA4 mutations in cisplatin resistance and metastasis in TNBC patients. Its inactivation was associated with the mesenchymal-like (MSL) subtype. Gene expression analysis showed that the epithelial-to-mesenchymal transition (EMT) pathway was activated in SMARCA4-deficient patients. Next, the Hippo pathway was activated in the SMARCA4 inactivation group, as evidenced by the higher CTNNB1, TGF-ß, and YAP1 oncogene signature scores. In SMARCA4 knockout cells, EMT was upregulated, and the cell line transcriptome changed from the SL to the MSL subtype. SMARCA4 knockout cells showed cisplatin resistance and Hippo-YAP/TAZ target gene activation. The YAP1 inhibitor verteporfin suppressed the expression of YAP1 target genes, and decreased cell viability and invasiveness on SMARCA4 knockout cells. SMARCA4 inactivation in TNBC endowed the resistance to cisplatin via EMT activation. The YAP1 inhibitor could become a novel strategy for patients with SMARCA4-inactivated TNBC.

13.
Comput Struct Biotechnol J ; 19: 4759-4769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504668

RESUMO

Researchers have gained new therapeutic insights using multi-omics platform approaches to study DNA, RNA, and proteins of comprehensively characterized human cancer cell lines. To improve our understanding of the molecular features associated with oncogenic modulation in cancer, we proposed a proteogenomic database for human cancer cell lines, called Protein-gene Expression Nexus (PEN). We have expanded the characterization of cancer cell lines to include genetic, mRNA, and protein data of 145 cancer cell lines from various public studies. PEN contains proteomic and phosphoproteomic data on 4,129,728 peptides, 13,862 proteins, 7,138 phosphorylation site-associated genomic variations, 117 studies, and 12 cancer. We analyzed functional characterizations along with the integrated datasets, such as cis/trans association for copy number alteration (CNA), single amino acid variation for coding genes, post-translation modification site variation for Single Amino Acid Variation, and novel peptide expression for noncoding regions and fusion genes. PEN provides a user-friendly interface for searching, browsing, and downloading data and also supports the visualization of genome-wide association between CNA and expression, novel peptide landscape, mRNA-protein abundance, and functional annotation. Together, this dataset and PEN data portal provide a resource to accelerate cancer research using model cancer cell lines. PEN is freely accessible at http://combio.snu.ac.kr/pen.

14.
Biochem Biophys Res Commun ; 528(1): 46-53, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32456797

RESUMO

GATA1 is a master transcription factor of megakaryopoiesis and erythropoiesis, and loss-of-function mutation can induce accumulation of megakaryocyte-erythroid progenitors (MEPs) in mice and humans. Accordingly, the murine MEP cell line (termed G1ME2 cells) encoding doxycycline (dox)-inducible anti-Gata1 shRNA on Hprt locus has been developed. The cells were CD41+CD71+KIT+, expand under dox, stem cell factor, and thrombopoietin (TPO), and terminally differentiate into erythroid cells or megakaryocytes upon removal of dox. Surprisingly, in this study, these Gata1low murine MEPs displayed accelerated growth from around 90-100 days after cell culture, impeded megakaryocytic potential, and maintained erythropoiesis. We specified them as late G1ME2 cells and discovered that increased CD41-KIT+ population during long-term culture was the main reason for the delayed megakaryopoiesis. The CD41 expression level was partially de-repressed by PI3K/AKT inhibitors, suggesting that TPO-mediated cell survival signaling pathway might have impacted on CD41 in the late G1ME2 cells. Nevertheless, among the late cells, the CD41+KIT+ cells could still generate megakaryocytes on dox withdrawal. Taken together, G1ME2 cells could provide a good model to study molecular mechanism of hematopoiesis because of their ability to expand excessively without artificial immortalization.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA1/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Transdução de Sinais
15.
Cancer Res Treat ; 52(3): 697-713, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32019277

RESUMO

PURPOSE: Hereditary cancer syndrome means that inherited genetic mutations can increase a person's risk of developing cancer. We assessed the frequency of germline mutations using an next-generation sequencing (NGS)-based multiple-gene panel containing 64 cancer-predisposing genes in Korean breast cancer patients with clinical features of hereditary breast and ovarian cancer syndrome (HBOC). MATERIALS AND METHODS: A total of 64 genes associated with hereditary cancer syndrome were selected for development of an NGS-based multi-gene panel. Targeted sequencing using the multi-gene panel was performed to identify germline mutations in 496 breast cancer patients with clinical features of HBOC who underwent breast cancer surgery between January 2002 and December 2017. RESULTS: Of 496 patients, 95 patients (19.2%) were found to have 48 deleterious germline mutations in 16 cancer susceptibility genes. The deleterious mutations were found in 39 of 250 patients (15.6%) who had breast cancer and another primary cancer, 38 of 169 patients (22.5%) who had a family history of breast cancer (≥ 2 relatives), 16 of 57 patients (28.1%) who had bilateral breast cancer, and 29 of 84 patients (34.5%) who were diagnosed with breast cancer at younger than 40 years of age. Of the 95 patients with deleterious mutations, 60 patients (63.2%) had BRCA1/2 mutations and 38 patients (40.0%) had non-BRCA1/2 mutations. We detected two novel deleterious mutations in BRCA2 and MLH1. CONCLUSION: NGS-based multiple-gene panel testing improved the detection rates of deleterious mutations and provided a cost-effective cancer risk assessment.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/diagnóstico , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/genética , Prognóstico , República da Coreia , Adulto Jovem
16.
Mol Cancer Res ; 18(2): 253-263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704731

RESUMO

The heterogeneity of triple-negative breast cancer (TNBC) poses difficulties for suitable treatment and leads to poor outcome. This study aimed to define a consensus molecular subtype (CMS) of TNBC and thus elucidate genomic characteristics and relevant therapy. We integrated the expression profiles of 957 TNBC samples from published datasets. We identified genomic characteristics of subtype by exploring the pathway activity, microenvironment, and clinical relevance. In addition, drug response (DR) scores (n = 181) were computationally investigated using chemical perturbation gene signatures and validated in our own patient with TNBC (n = 38) who received chemotherapy and organoid biobank data (n = 64). Subsequently, cooperative functions with drugs were also explored. Finally, we classified TNBC into four CMSs: stem-like; mesenchymal-like; immunomodulatory; luminal-androgen receptor. CMSs also elucidated distinct tumor-associated microenvironment and pathway activities. Furthermore, we discovered metastasis-promoting genes, such as secreted phosphoprotein 1 by comparing with primary. Computational DR scores associated with CMS revealed drug candidates (n = 18), and it was successfully evaluated in cisplatin response of both patients and organoids. Our CMS recapitulated in-depth functional and cellular heterogeneity encompassing primary and metastatic TNBC. We suggest DR scores to predict CMS-specific DRs and to be successfully validated. Finally, our approach systemically proposes a relevant therapeutic prediction model as well as prognostic markers for TNBC. IMPLICATIONS: We delineated the genomic characteristic and computational DR prediction for TNBC CMS from gene expression profile. Our systematic approach provides diagnostic markers for subtype and metastasis verified by machine-learning and novel therapeutic candidates for patients with TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Genômica , Humanos , Aprendizado de Máquina , Modelos Genéticos , Metástase Neoplásica , Testes Farmacogenômicos , Valor Preditivo dos Testes , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia
17.
Sci Rep ; 9(1): 9675, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273278

RESUMO

Gastric cancer (GC) is a heterogeneous disease, so molecular classification is important for selecting the most appropriate treatment strategies for GC patients. To be applicable in the clinic, there is an urgent need for a platform that will allow screening real-life archival tissue specimens. For this purpose, we performed RNA sequencing of 50 samples from our Asian Cancer Research Group (ACRG) GC cohort to reproduce the molecular subtypes of GC using archival tissues with different platforms. We filtered out genes from the epithelial-to-mesenchymal transition (EMT) and microsatellite instability-high (MSI) signatures (coefficient ≤ 0.4) followed by the ACRG molecular subtype strategy. Overall accuracy of reproduction of ACRG subtype was 66% (33/50). Given the importance of EMT subtype in future clinical trials, we further developed the minimum number of genes (10 genes) for EMT signatures correlating highly with the original EMT signatures (correlation ≥ 0.65). Using our 10-gene model, we could classify EMT subtypes with high sensitivity (0.9576) and specificity (0.811). In conclusion, we reproduced ACRG GC subtypes using different platforms and could predict EMT subtypes with 10 genes and are now planning to use them in our prospective clinical study of precision oncology in GC.


Assuntos
Adenocarcinoma/classificação , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Transição Epitelial-Mesenquimal , Inclusão em Parafina/métodos , Neoplasias Gástricas/classificação , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Estudos de Coortes , Formaldeído/química , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Neoplasias Gástricas/genética , Taxa de Sobrevida , Transcriptoma , Sequenciamento do Exoma
18.
Cancer Sci ; 110(5): 1760-1770, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30811755

RESUMO

Very young breast cancer patients are more common in Asian countries than Western countries and are thought to have worse prognosis than older patients. The aim of the current study was to identify molecular characteristics of young patients with estrogen receptor (ER)-positive breast cancer by analyzing mutations and copy number variants (CNV), and by applying expression profiling. The whole exome and transcriptome of 47 Korean young breast cancer (KYBR) patients (age <35) were analyzed. Genomic profiles were constructed using mutations, CNV and differential gene expression from sequencing data. Pathway analyses were also performed using gene sets to identify biological processes. Our data were compared with young ER+ breast cancer patients in The Cancer Genome Atlas (TCGA) dataset. TP53, PIK3CA and GATA3 were highly recurrent somatic mutation genes. APOBEC-associated mutation signature was more frequent in KYBR compared with young TCGA patients. Integrative profiling was used to classify our patients into 3 subgroups based on molecular characteristics. Group A showed luminal A-like subtype and IGF1R signal dysregulation. Luminal B patients were classified into groups B and C, which showed chromosomal instability and enrichment for APOBEC3A/B deletions, respectively. Group B was characterized by 11q13 (CCND1) amplification and activation of the ubiquitin-mediated proteolysis pathway. Group C showed 17q12 (ERBB2) amplification and lower ER and progesterone receptor expression. Group C was also distinguished by immune activation and lower epithelial-mesenchyme transition (EMT) degree compared with group B. This study showed that integrative genomic profiling could classify very young patients with breast cancer into molecular subgroups that are potentially linked to different clinical characteristics.


Assuntos
Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Receptores de Estrogênio/genética , Adulto , Fatores Etários , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estudos Retrospectivos , Análise de Sequência de RNA
19.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1635-1644, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30004886

RESUMO

Insertions and deletions (INDELs) comprise a significant proportion of human genetic variation, and recent papers have revealed that many human diseases may be attributable to INDELs. With the development of next-generation sequencing (NGS) technology, many statistical/computational tools have been developed for calling INDELs. However, there are differences among those tools, and comparisons among them have been limited. In order to better understand these inter-tool differences, five popular and publicly available INDEL calling tools-GATK HaplotypeCaller, Platypus, VarScan2, Scalpel, and GotCloud-were evaluated using simulation data, 1000 Genomes Project data, and family-based sequencing data. The accuracy of INDEL calling by each tool was mainly evaluated by concordance rates. Family-based sequencing data, which consisted of 49 individuals from eight Korean families, were used to calculate Mendelian error rates. Our comparison results show that GATK HaplotypeCaller usually performs the best and that joint calling with Platypus can lead to additional improvements in accuracy. The result of this study provides important information regarding future directions for the variant detection and the algorithms development.


Assuntos
Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL/genética , Análise de Sequência de DNA , Software , Algoritmos , Biologia Computacional , Simulação por Computador , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
20.
Mol Cells ; 41(8): 733-741, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29991672

RESUMO

Mutations in spliceosome components have been implicated in carcinogenesis of various types of cancer. One of the most frequently found is U2AF1 S34F missense mutation. Functional analyses of this mutation have been largely limited to hematological malignancies although the mutation is also frequently seen in other cancer types including lung adenocarcinoma (LUAD). We examined the impact of knockdown (KD) of wild type (wt) U2AF1 and ectopic expression of two splice variant S34F mutant proteins in terms of alternative splicing (AS) pattern and cell cycle progression in A549 lung cancer cells. We demonstrate that induction of distinct AS events and disruption of mitosis at distinct sub-stages result from KD and ectopic expression of the mutant proteins. Importantly, when compared with the splicing pattern seen in LUAD patients with U2AF1 S34F mutation, ectopic expression of S34F mutants but not KD was shown to result in common AS events in several genes involved in cell cycle progression. Our study thus points to an active role of U2AF1 S34F mutant protein in inducing cell cycle dysregulation and mitotic stress. In addition, alternatively spliced genes which we describe here may represent novel potential markers of lung cancer development.


Assuntos
Adenocarcinoma de Pulmão/genética , Mutação , Fator de Processamento U2AF/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Processamento Alternativo , Sequência de Bases , Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Mitose/genética , Fator de Processamento U2AF/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA