Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836456

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory disease characterized by dry and itchy skin. Recently, it has been reported that oxidative stress is involved in skin diseases, possibly including AD. Vitamin C, also referred to as ascorbic acid, is a vital water-soluble compound that functions as an essential nutrient. It plays a significant role as both an antioxidant and an additive in various pharmaceutical and food products. Despite the fact that vitamin C is easily oxidized, we have developed NXP081, a single-stranded DNA aptamer that selectively binds to vitamin C, thereby inhibiting its oxidation. The objective of the current research was to examine the impact of NXP081, an animal model of AD induced by 2,4-dinitrofluorobenzene (DNFB). The experimental drug NXP081, when taken orally, showed promising results in reducing inflammation and improving the skin conditions caused by DNFB. The administration of NXP081 resulted in a significant reduction in ear swelling and a noticeable improvement in the appearance of skin lesions. In addition, the administration of NXP081 resulted in a significant decrease in the migration of mast cells in the skin lesions induced by DNFB. Moreover, NXP081 inhibited the production of interferon-gamma (IFN-γ) in CD4+ T cells that were activated and derived from the lymph nodes. Our findings provide useful information about the anti-inflammatory effect of NXP081 on AD.


Assuntos
Aptâmeros de Nucleotídeos , Dermatite Atópica , Dermatopatias , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitrofluorbenzeno/efeitos adversos , Camundongos Endogâmicos BALB C , Aptâmeros de Nucleotídeos/efeitos adversos , Ácido Ascórbico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Dermatopatias/metabolismo , Vitaminas/farmacologia , Pele/metabolismo , Citocinas/metabolismo
2.
Immunopharmacol Immunotoxicol ; 45(1): 114-121, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36066092

RESUMO

BACKGROUND: Oxidative stress and inflammation are involved in chronic fatigue. Euscaphic acid (EA) is an active compound of Eriobotrya japonica (Loquat) and has anti-oxidative effect. METHODS: The goal of present study is to prove whether EA could relieve fatigue through enhancing anti-oxidant and anti-inflammatory effects in in vitro/in vivo models. RESULTS: EA notably improved activity of superoxide dismutase (SOD) and catalase (CAT), while EA reduced levels of malondiadehyde (MDA) and inflammatory cytokines without cytotoxicity in H2O2-stimulated in myoblast cell line, C2C12 cells. EA significantly reduced levels of fatigue-causing factors such as lactate dehydrogenase (LDH) and creatin kinase (CK), while EA significantly incresed levels of anti-fatigue-related factor, glycogen compared to the H2O2-stimulated C2C12 cells. In treadmill stress test (TST), EA significantly enhanced activities of SOD and CAT as well as exhaustive time and decreased levels of MDA and inflammatory cytokines. After TST, levels of free fatty acid, citrate synthase, and muscle glycogen were notably enhanced by oral administration of EA, but EA decreased levels of lactate, LDH, cortisol, aspartate aminotransferase, alanine transaminase, CK, glucose, and blood urea nitrogen compared to the control group. Furthermore, in forced swimming test, EA significantly increased levels of anti-fatigue-related factors and decreased excessive accumulations of fatigue-causing factors. CONCLUSIONS: Therefore, the results indicate that potent anti-fatigue effect of EA can be achieved via the improvement of anti-oxidative and anti-inflammatory properties, and this study will provide scientific data for EA to be developed as a novel and efficient component in anti-fatigue health functional food.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Glicogênio/metabolismo , Glicogênio/farmacologia , Creatina Quinase , Superóxido Dismutase/metabolismo
3.
Molecules ; 24(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901980

RESUMO

Crotonaldehyde is an extremely toxic α,ß-unsaturated aldehyde found in cigarette smoke, and it causes inflammation and vascular dysfunction. Autophagy has been reported to play a key role in the pathogenesis of vascular diseases. However, the precise mechanism underlying the role of acute exposure crotonaldehyde in vascular disease development remains unclear. In the present study, we aimed to investigate the effect of crotonaldehyde-induced autophagy in endothelial cells. Acute exposure to crotonaldehyde decreased cell viability and induced autophagy followed by cell death. In addition, inhibiting the autophagic flux markedly promoted the viability of endothelial cells exposed to high concentrations of crotonaldehyde. Crotonaldehyde activated the AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) pathways, and pretreatment with inhibitors specific to these kinases showed autophagy inhibition and partial improvement in cell viability. These data show that acute exposure to high concentrations of crotonaldehyde induces autophagy-mediated cell death. These results might be helpful to elucidate the mechanisms underlying crotonaldehyde toxicity in the vascular system and contribute to environmental risk assessment.


Assuntos
Aldeídos/farmacologia , Autofagia/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Pharmacol Exp Ther ; 367(2): 215-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135179

RESUMO

The cytotoxic drugs used in chemotherapy are often accompanied by nausea and vomiting. Despite the use of antiemetic drugs, chemotherapy-induced nausea and vomiting (CINV) remain significant side effects for cancer patients and are associated with serotonin type 3 receptor (5-HT3R) activation in the brainstem. Farnesol and nerolidol are sesquiterpene alcohols found in essential oils of plants such as roses, citronella, and lemon grass and are used as antiemetic parapheromones. Medicinal plants often are effective in treating gastrointestinal disorders, including CINV, although the mechanism of action remains unclear. In the current work, the antiemetic efficacy of the naturally occurring racemic mixture of farnesol (m-farnesol) and nerolidol (m-nerolidol) against cisplatin CINV was tested using the pica behavior (consumption of nonnutritive substances) of rats. Animals treated with m-farnesol or m-nerolidol consumed a smaller amount of kaolin than of saline-treated control animals. This result is consistent with the antiemetic efficacy of farnesol and nerolidol. Compared with controls, m-farnesol- but not m-nerolidol-treated animals consumed more food and lost less body weight. Thus, farnesol effectively reduced appetite suppression and weight loss induced by cisplatin. In separate experiments, isomers of farnesol and nerolidol were tested on 5-HT-induced responses of acutely isolated nodose neurons using patch-clamp methods. All the tested constituents inhibited 5-HT3R-mediated current in a noncompetitive manner. Thus, both farnesol and nerolidol may exert antiemetic efficacy by inhibiting 5-HT signaling in cranial visceral afferents, resulting in interruption of emetogenic signaling; however, nerolidol failed to suppress cisplatin-induced anorexia and weight loss, suggesting that additional mechanisms may contribute.


Assuntos
Antieméticos/farmacologia , Antineoplásicos/efeitos adversos , Náusea/tratamento farmacológico , Vômito/tratamento farmacológico , Animais , Apetite/efeitos dos fármacos , Cisplatino/efeitos adversos , Farneseno Álcool/farmacologia , Masculino , Náusea/induzido quimicamente , Óleos Voláteis/farmacologia , Pica/tratamento farmacológico , Ratos , Ratos Wistar , Receptores 5-HT3 de Serotonina/metabolismo , Sesquiterpenos/farmacologia , Vômito/induzido quimicamente , Redução de Peso/efeitos dos fármacos
5.
Chem Pharm Bull (Tokyo) ; 63(12): 1076-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633030

RESUMO

The aim of this study was to search for a novel choline acetyltransferase (ChAT) activator from plants traditionally grown in Korea. An ethanol extract from Chaenomeles sinensis Koehne showed the highest ChAT-activating effect in vitro in an assay that used human neuroblastoma cells and [(14)C]acetyl-CoA. The active compound was speculated to be stearic acid methyl ester (SAME). In an in vivo experiment, C. sinensis extract and SAME improved trimethyltin (TMT)-induced deficits in learning and memory in mice as assessed by a Y-maze behavioral test and a passive avoidance test. The C. sinensis extract might attenuate the TMT-induced brain disorder. This study suggests that SAME from C. sinensis might be useful in the treatment of Alzheimer's disease.


Assuntos
Colina O-Acetiltransferase/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Neuroblastoma/metabolismo , Extratos Vegetais/farmacologia , Rosaceae/química , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Compostos de Trimetilestanho/farmacologia
6.
J Anal Methods Chem ; 2015: 916346, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550520

RESUMO

Few studies have investigated Seomae mugwort (a Korean native mugwort variety of Artemisia argyi H. Lév. & Vaniot), exclusively cultivated in the southern Korean peninsula, and the possibility of its use as a food resource. In the present study, we compared the nutritional and chemical properties as well as sensory attributes of Seomae mugwort and the commonly consumed species Artemisia princeps Pamp. In comparison with A. princeps, Seomae mugwort had higher contents of polyunsaturated fatty acids, total phenolic compounds, vitamin C, and essential amino acids. In addition, Seomae mugwort had better radical scavenging activity and more diverse volatile compounds than A. princeps as well as favorable sensory attributes when consumed as tea. Given that scant information is available regarding the Seomae mugwort and its biological, chemical, and sensory characteristics, the results herein may provide important characterization data for further industrial and research applications of this mugwort variety.

7.
Int J Mol Sci ; 16(7): 14526-39, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26132561

RESUMO

The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.


Assuntos
Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Flavanonas/farmacologia , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Morte Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Regulação para Cima
8.
J Invest Dermatol ; 135(11): 2705-2713, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26099025

RESUMO

Atopic dermatitis (AD) is a common multifactorial chronic skin disease that has a multiple and complex pathogenesis. AD is gradually increasing in prevalence globally. In NC/Nga mice, repetitive applications of 2, 4-dinitrofluorobenzene (DNFB) evoke AD-like clinical symptoms similar to human AD. Aspartame (N-L-α-aspartyl-L-phenylalanine 1-methyl ester) is a methyl ester of a dipeptide, which is used as an artificial non-nutritive sweetener. Aspartame has analgesic and anti-inflammatory functions that are similar to the function of nonsteroidal anti-inflammatory drugs such as aspirin. We investigated whether aspartame can relieve AD-like clinical symptoms induced by DNFB treatment in NC/Nga mice. Sucrose did not relieve AD-like symptoms, whereas aspartame at doses of 0.5 µg kg(-1) and 0.5 mg kg(-1) inhibited ear swelling and relieved AD-like clinical symptoms. Aspartame inhibited infiltration of inflammatory cells including eosinophils, mast cells, and CD4(+) T cells, and suppressed the expression of cytokines including IL-4 and IFN-γ, and total serum IgE levels. Aspartame may have therapeutic value in the treatment of AD.


Assuntos
Aspartame/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dinitrofluorbenzeno/farmacologia , Flavanonas , Análise de Variância , Animais , Biópsia por Agulha , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina E/efeitos dos fármacos , Imunoglobulina E/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Distribuição Aleatória
9.
J Cardiovasc Pharmacol ; 66(1): 108-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25815672

RESUMO

Consumption of omega-3 polyunsaturated fatty acid, particularly eicosapentaenoic acid (EPA), is associated with a significant reduction in the risk of developing cardiovascular disease. The aim of this study was to investigate whether heme oxygenase-1 (HO-1) induction contributes to the cytoprotective effects of EPA in endothelial cells threatened with oxidative damage. In this study, we investigated the effect of EPA on the induction of HO-1 by NF-E2-related factor 2 (Nrf2) in human umbilical vein endothelial cells. In cells treated with low concentrations of EPA (10-25 µM), HO-1 expression increased in a time- and concentration-dependent manner. Additionally, EPA treatment increased Nrf2 nuclear translocation and antioxidant response element activity, leading to the upregulation of HO-1 expression. Furthermore, treatment with EPA reduced hydrogen peroxide (H(2)O(2))-induced cell death. The reduction in cell death was reversed by treatment with zinc protoporphyrin, an inhibitor of HO-1, indicating that HO-1 contributed to the protective effect of EPA. These data suggest that EPA protects against H(2)O(2)-induced oxidative stress in endothelial cells by activating Nrf2 and inducting HO-1 expression.


Assuntos
Citoproteção/fisiologia , Ácido Eicosapentaenoico/farmacologia , Heme Oxigenase-1/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Citoproteção/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos
10.
Appl Microbiol Biotechnol ; 99(5): 2083-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25620368

RESUMO

Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy.


Assuntos
Vias Biossintéticas , Biotecnologia/métodos , Cinamatos/metabolismo , Depsídeos/metabolismo , Fatores Imunológicos/metabolismo , Cinamatos/síntese química , Depsídeos/síntese química , Fatores Imunológicos/química , Perilla frutescens/metabolismo , Rosmarinus/metabolismo , Salvia officinalis/metabolismo , Tecnologia Farmacêutica/métodos , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA