Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 123: 103932, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34628064

RESUMO

OBJECTIVE: Causality mining is an active research area, which requires the application of state-of-the-art natural language processing techniques. In the healthcare domain, medical experts create clinical text to overcome the limitation of well-defined and schema driven information systems. The objective of this research work is to create a framework, which can convert clinical text into causal knowledge. METHODS: A practical approach based on term expansion, phrase generation, BERT based phrase embedding and semantic matching, semantic enrichment, expert verification, and model evolution has been used to construct a comprehensive causality mining framework. This active transfer learning based framework along with its supplementary services, is able to extract and enrich, causal relationships and their corresponding entities from clinical text. RESULTS: The multi-model transfer learning technique when applied over multiple iterations, gains substantial performance improvements. We also present a comparative analysis of the presented techniques with their common alternatives, which demonstrate the correctness of our approach and its ability to capture most causal relationships. CONCLUSION: The presented framework has provided cutting-edge results in the healthcare domain. However, the framework can be tweaked to provide causality detection in other domains, as well. SIGNIFICANCE: The presented framework is generic enough to be utilized in any domain, healthcare services can gain massive benefits due to the voluminous and various nature of its data. This causal knowledge extraction framework can be used to summarize clinical text, create personas, discover medical knowledge, and provide evidence to clinical decision making.


Assuntos
Mineração de Dados , Processamento de Linguagem Natural , Aprendizado de Máquina , Semântica
2.
Int J Med Inform ; 132: 103926, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605882

RESUMO

BACKGROUND: Diabetic Retinopathy (DR) is considered a pathology of retinal vascular complications, which stays in the top causes of vision impairment and blindness. Therefore, precisely inspecting its progression enables the ophthalmologists to set up appropriate next-visit schedule and cost-effective treatment plans. In the literature, existing work only makes use of numerical attributes in Electronic Medical Records (EMR) for acquiring such kind of DR-oriented knowledge through conventional machine learning techniques, which require an exhaustive job of engineering most impactful risk factors. OBJECTIVE: In this paper, an approach of deep bimodal learning is introduced to leverage the performance of DR risk progression identification. METHODS: In particular, we further involve valuable clinical information of fundus photography in addition to the aforementioned systemic attributes. Accordingly, a Trilogy of Skip-connection Deep Networks, namely Tri-SDN, is proposed to exhaustively exploit underlying relationships between the baseline and follow-up information of the fundus images and EMR-based attributes. Besides that, we adopt Skip-Connection Blocks as basis components of the Tri-SDN for making the end-to-end flow of signals more efficient during feedforward and backpropagation processes. RESULTS: Through a 10-fold cross validation strategy on a private dataset of 96 diabetic mellitus patients, the proposed method attains superior performance over the conventional EMR-modality learning approach in terms of Accuracy (90.6%), Sensitivity (96.5%), Precision (88.7%), Specificity (82.1%), and Area Under Receiver Operating Characteristics (88.8%). CONCLUSIONS: The experimental results show that the proposed Tri-SDN can combine features of different modalities (i.e., fundus images and EMR-based numerical risk factors) smoothly and effectively during training and testing processes, respectively. As a consequence, with impressive performance of DR risk progression recognition, the proposed approach is able to help the ophthalmologists properly decide follow-up schedule and subsequent treatment plans.


Assuntos
Algoritmos , Retinopatia Diabética/diagnóstico , Registros Eletrônicos de Saúde/estatística & dados numéricos , Fundo de Olho , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/etiologia , Humanos , Fotografação , Curva ROC , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA