Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cells ; 13(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39056810

RESUMO

Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.


Assuntos
Antioxidantes , Células-Tronco Mesenquimais , Placenta , Extratos Vegetais , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Feminino , Placenta/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Achyranthes/química , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular
2.
Environ Sci Technol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009035

RESUMO

Nitrogen trifluoride (NF3) is a potent and long-lived greenhouse gas that is widely used in the manufacture of semiconductors, photovoltaic cells, and flat panel displays. Using atmospheric observations from eight monitoring stations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and inverse modeling with a global 3-D atmospheric chemical transport model (GEOS-Chem), we quantify global and regional NF3 emission from 2015 to 2021. We find that global emissions have grown from 1.93 ± 0.58 Gg yr-1 (± one standard deviation) in 2015 to 3.38 ± 0.61 Gg yr-1 in 2021, with an average annual increase of 10% yr-1. The available observations allow us to attribute significant emissions to China (0.93 ± 0.15 Gg yr-1 in 2015 and 1.53 ± 0.20 Gg yr-1 in 2021) and South Korea (0.38 ± 0.07 Gg yr-1 to 0.65 ± 0.10 Gg yr-1). East Asia contributes around 73% of the global NF3 emission increase from 2015 to 2021: approximately 41% of the increase is from emissions from China (with Taiwan included), 19% from South Korea, and 13% from Japan. For Japan, which is the only one of these three countries to submit annual NF3 emissions to UNFCCC, our bottom-up and top-down estimates are higher than reported. With increasing demand for electronics, especially flat panel displays, emissions are expected to further increase in the future.

3.
NPJ Aging ; 10(1): 30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902280

RESUMO

Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially "B cell activation" affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.

4.
Results Chem ; 72024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38560090

RESUMO

Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen (N = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library (N = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.

5.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067136

RESUMO

The vascular network contributes to the development of follicles. However, the therapeutic mechanism between vascular remodeling and ovarian functions is still unclear. Therefore, we demonstrated whether increased HGF by placenta-derived mesenchymal stem cells (PD-MSCs) improves ovarian function in an ovariectomized rat model via vascular remodeling by Wnt signaling activation. We established a half-ovariectomized rat model in which damaged ovaries were induced by ovariectomy of half of each ovary, and PD-MSCs (5 × 105 cells) were transplanted by intravenous injection. Three weeks after transplantation, rats in all groups were sacrificed. We examined the secretion of HGF by PD-MSCs through culture medium. The vascular structure in injured ovarian tissues was restored to a greater extent in the PD-MSC transplantation (Tx) group than in the nontransplantation (NTx) group (* p < 0.05). The expression of genes related to Wnt signaling (e.g., LRP6, GSK3ß, ß-catenin) was significantly increased in the Tx group compared to the NTx group (* p < 0.05). However, the expression of genes related to vascular permeability (e.g., Asef, ERG3) was significantly decreased in the Tx group compared to the NTx group (* p < 0.05). Follicular development was improved in the Tx group compared to the NTx group (* p < 0.05). Furthermore, to evaluate vascular function, we cocultivated PD-MSCs after human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS), and we analyzed the vascular formation assay and dextran assay in HUVECs. Cocultivation of PD-MSCs with injured HUVECs enhanced vascular formation and decreased endothelial cell permeability (* p < 0.05). Also, cocultivation of PD-MSCs with explanted ovarian tissues improved follicular maturation compared to cocultivation of the Wnt inhibitor-treated PD-MSCs with explanted ovarian tissues. Therefore, HGF secreted by PD-MSCs improved ovarian function in rats with ovarian dysfunction by decreasing vascular permeability via Wnt signaling.


Assuntos
Fator de Crescimento de Hepatócito , Células-Tronco Mesenquimais , Ovário , Remodelação Vascular , Animais , Feminino , Humanos , Ratos , Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Ovário/fisiologia , Placenta/citologia , Placenta/fisiologia
6.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003735

RESUMO

The insulin resistance caused by impaired glucose metabolism induces ovarian dysfunction due to the central importance of glucose as a source of energy. However, the research on glucose metabolism in the ovaries is still lacking. The objectives of this study were to analyze the effect of PD-MSCs on glucose metabolism through IGFBP2-AMPK signaling and to investigate the correlation between glucose metabolism and ovarian function. Thioacetamide (TAA) was used to construct a rat injury model. PD-MSCs were transplanted into the tail vein (2 × 106) 8 weeks after the experiment started. The expression of the IGFBP2 gene and glucose metabolism factors (e.g., AMPK, GLUT4) was significantly increased in the PD-MSC group compared to the nontransplantation (NTx) group (* p < 0.05). The levels of follicular development markers and the sex hormones AMH, FSH, and E2 were also higher than those in the TAA group. Using ex vivo cocultivation, the mRNA and protein expression of IGFBP2, AMPK, and GLUT4 were significantly increased in the cocultivation with the PD-MSCs group and the recombinant protein-treated group (* p < 0.05). These findings suggest that the increased IGFBP2 levels by PD-MSCs play an important role in glucose metabolism and ovarian function through the IGFBP2-AMPK signaling pathway.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Tioacetamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Glucose/metabolismo
7.
Antioxidants (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627570

RESUMO

Oxidative stress initiates various degenerative diseases, and it is caused by excessive reactive oxygen species (ROS) production. Oxidative stress is a key factor that causes infertility by inducing ovarian dysfunction, characterized by irregular hormone levels, lower quality of mature follicles, and loss of follicles. Hence, stem cell therapy has been actively studied as an approach to overcome the side effects of hormone replacement therapy (HRT) on ovarian dysfunction. However, there is a lack of evidence about the appropriate number of cells required for stem cell therapy. Therefore, based on the antioxidant effects investigated in this study, we focused on determining the appropriate dose of stem cells for transplantation in an animal model with ovarian dysfunction. One week after half-ovariectomy, placenta-derived mesenchymal stem cells (PD-MSCs, 1 × 105 cells, 5 × 105 cells, or 2.5 × 106 cells) were injected intravenously into the Tx groups through the tail vein. As a result, the mRNA expression of hAlu gradually increased as the transplanted cell concentration increased. Compared with no transplantation (NTx), the transplantation of PD-MSCs improved folliculogenesis, including the levels of secreted hormones and numbers of follicles, by exerting antioxidant effects. Also, the levels of oxidized glutathione in the serum of animal models after transplantation were significantly increased (* p < 0.05). These results indicated that PD-MSC transplantation improved ovarian function in half-ovariectomized rats by exerting antioxidant effects. According to our data, increasing the number of transplanted cells did not proportionally increase the effectiveness of the treatment. We suggest that low-dose PD-MSC transplantation has the same therapeutic effect as described in previous studies. These findings provide new insights for further understanding reproductive systems and provide evidence for related clinical trials.

8.
Front Pharmacol ; 14: 1219985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492086

RESUMO

Opioid use disorders and overdose have become a major public health concern in recent years. U-47700, a New psychoactive substances (NPS) opioid, also known as "pinky" or "pink" has been identified as a new threat in the drug supply because of its potency and abuse potential. Conjugate vaccines that can produce antibodies against target drug molecules have emerged as a promising tool to treat substance use disorders. Herein, we report the design, synthesis, and in vivo characterization of a U-47700 vaccine. The vaccine demonstrated favorable results with rodents producing elevated levels of antibody titer and sub-micromolar affinity to U-47700. In addition, antibodies generated by the vaccine effectively mitigated drug-induced effects by preventing the drug from penetrating the blood-brain barrier, which was verified by antinociception and drug biodistribution studies. The development of a vaccine against U-47700 and other NPS opioids contributes to the continued advancement of non-conventional pharmacological treatments to address the global opioid epidemic.

9.
J Biosci Bioeng ; 135(5): 395-401, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878769

RESUMO

The preconditioning of digested sludge in sludge filtration systems produces hydrogen sulfide (H2S), a major odor-causing source. This study evaluated the effects of adding H2S-removing bacteria to sludge-filtration systems. Ferrous-oxidizing bacteria (FOB) and sulfur-oxidizing bacteria (SOB) were mass-cultivated in a hybrid bioreactor equipped with an internal circulation system. In this bioreactor, FOB and SOB effectively removed >99% of H2S; however, the acidic conditions created by adding a coagulant during digested sludge preconditioning were more favorable for FOB than for SOB. In batch tests, SOB and FOB removed 94 ± 1.1% and 99 ± 0.1% of H2S, respectively; therefore, digested sludge preconditioning proved more suitable for FOB activity than SOB activity. The results revealed that the optimal FOB addition ratio was 0.2%, validated using a pilot filtration system. Moreover, the 57.5 ± 2.9 ppm H2S generated in the sludge preconditioning step was reduced to 0.01 ± 0.01 ppm after adding 0.2% FOB. Therefore, the results of this study will be useful because they provide a process for biologically removing odor-causing sources without affecting the dewatering efficiency of the filtration system.


Assuntos
Sulfeto de Hidrogênio , Esgotos/microbiologia , Odorantes , Bactérias/genética , Enxofre , Reatores Biológicos , Oxirredução
10.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555651

RESUMO

Mesenchymal stem cells (MSCs) are next-generation treatment in degenerative diseases. For the application of mesenchymal stem cell therapy to degenerative disease, transplantation conditions (e.g., optimized dose, delivery route and regenerating efficacy) should be considered. Recently, researchers have studied the mode of action of MSC in the treatment of ovarian degenerative disease. However, the evidence for the optimal number of cells for the developing stem cell therapeutics is insufficient. The objective of this study was to evaluate the efficacy in ovarian dysfunction, depends on cell dose. By intraovarian transplantation of low (1 × 105) and high (5 × 105) doses of placenta-derived mesenchymal stem cells (PD-MSCs) into thioacetamide (TAA)-injured rats, we compared the levels of apoptosis and oxidative stress that depend on different cell doses. Apoptosis and oxidative stress were significantly decreased in the transplanted (Tx) group compared to the non-transplanted (NTx) group in ovarian tissues from TAA-injured rats (* p < 0.05). In addition, we confirmed that follicular development was significantly increased in the Tx groups compared to the NTx group (* p < 0.05). However, there were no significant differences in the apoptosis, antioxidant or follicular development of injured ovarian tissues between the low and high doses PD-MSCs group. These findings provide new insights into the understanding and evidence obtained from clinical trials for stem cell therapy in reproductive systems.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Ovarianas , Transplantes , Humanos , Feminino , Ratos , Animais
11.
Neurourol Urodyn ; 41(6): 1355-1363, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35556260

RESUMO

AIMS: There is no clear pathophysiologic evidence determining how long overactive bladder (OAB) medication should be continued. We, therefore, investigated the effect of mirabegron using cessation (CES) or continuation (CON) treatment in an OAB animal model. METHODS: Female C57BL/6 mice were divided into four groups (N = 8 each): Sham, OAB, CES, and CON groups. The OAB-like condition was induced by three times weekly intravesical instillations of KCl mixture with hyaluronidase. After the last intravesical instillation for inducing OAB, mirabegron (2 mg/kg/day) was administered in CES and CON groups for 10 and 20 days, respectively. Final experiments were carried out on 20 days from the last intravesical instillation in all groups. After cystometry, mRNA levels of bladder muscarinic, ß-adrenergic, and P2X purinergic receptors were measured to investigate bladder efferent and afferent activity. In addition, mRNA levels of CCL2 and CCR2 in L6-S1 dorsal root ganglia (DRG) were measured to assess afferent sensitization. Immunofluorescent staining of CX3CR1, GFAP, and CCR2 in the L6 spinal cord was also conducted to investigate glial activation and central sensitization. RESULTS: OAB mice showed bladder overactivity evidenced by decreased intercontraction interval (3.56 ± 0.51 vs. 5.76 ± 0.95 min in sham mice), increased non-voiding contractions (0.39 ± 0.11 vs. 0.13 ± 0.07/min in sham mice), and inefficient voiding (72.1 ± 8.6% vs. 87.1 ± 9.5% in sham mice). Increased M2, M3, ß2, ß3, P2X2 , P2X3 , P2X4 , and P2X7 levels in the bladder and increased CCL2 and CCR2 in DRG indicate bladder efferent and afferent hyperexcitability. In addition, CX3CR1, GFAP, and CCR2 in the L6 spinal cord were upregulated in OAB mice. However, the CON group exhibited reduced ß2, ß3, P2X2 , P2X3 , P2X4 , and P2X7 levels in the bladder, reduced CCL2 and CCR2 in DRG, which are markers of afferent hyperexcitability, and reduced immunoreactivities of CX3CR1, GFAP, and CCR2 in the L6 spinal cord, which are markers of the central sensitization. Moreover, the CON group showed better improvements in nonvoiding contractions (0.16 ± 0.09 vs. 0.44 ± 0.17/min) and voiding efficiency (93.9 ± 7.4% vs. 76.5 ± 13.1%) and reductions in bladder ß3 receptors and CCL2 of L6-S1 DRG, and immunoreactivities of CX3CR1 and GFAP in the L6 spinal cord compared to the CES group. CONCLUSIONS: Continuous mirabegron treatment seems to prevent central sensitization and, thus, might be desirable for long-term disease control of OAB.


Assuntos
Bexiga Urinária Hiperativa , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Animais , Sensibilização do Sistema Nervoso Central , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Tiazóis , Bexiga Urinária Hiperativa/tratamento farmacológico
12.
Stem Cell Res Ther ; 13(1): 95, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255961

RESUMO

BACKGROUND: Vascular abnormalities in the ovary cause infertility accompanied by ovarian insufficiency due to a microenvironment of barren ovarian tissues. Placenta-derived mesenchymal stem cells (PD-MSCs, Naïve) treatment in ovarian dysfunction shows angiogenic effect, however, the therapeutic mechanism between ovarian function and vascular remodeling still unclear. Therefore, we examined whether by phosphatase regenerating liver-1 (PRL-1), which is correlated with angiogenesis in reproductive systems, overexpressed PD-MSCs could maximize the angiogenic effects in an ovarian tissues injured of rat model with partial ovariectomy and their therapeutic mechanism by enhanced vascular function via PDGF signaling. METHODS: PD-MSCsPRL-1 (PRL-1) were generated by nonviral AMAXA gene delivery system and analyzed the vascular remodeling and follicular development in ovary. One week after Sprague-Dawley (SD) rats ovariectomy, Naïve and PRL-1 was transplanted. The animals were sacrificed at 1, 3 and 5 weeks after transplantation and vascular remodeling and follicular development were analyzed. Also, human umbilical vein endothelial cells (HUVECs) and ovarian explantation culture were performed to prove the specific effects and mechanism of PRL-1. RESULTS: Vascular structures in ovarian tissues (e.g., number of vessels, thickness and lumen area) showed changes in the Naïve and PRL-1-overexpressed PD-MSC (PRL-1) transplantation (Tx) groups compared to the nontransplantation (NTx) group. Especially, PRL-1 induce to increase the expression of platelet-derived growth factor (PDGF), which plays a role in vascular remodeling as well as follicular development, compared to the NTx. Also, the expression of genes related to pericyte and vascular permeability in arteries was significantly enhanced in the PRL-1 compared to the NTx (p < 0.05). PRL-1 enhanced the vascular formation and permeability of human umbilical vein endothelial cells (HUVECs) via activated the PDGF signaling pathway. CONCLUSIONS: Our results show that PRL-1 restored ovarian function by enhanced vascular function via PDGF signaling pathway. These findings offer new insight into the effects of functionally enhanced stem cell therapy for reproductive systems and should provide new avenues to develop more efficient therapies in degenerative medicine.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteínas Tirosina Fosfatases/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ovário/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Placenta , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Remodelação Vascular
13.
J Med Chem ; 65(3): 2522-2531, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34994550

RESUMO

New psychoactive substance (NPS) opioids have proliferated within the international drug market. While synthetic opioids are traditionally composed of fentanyl analogues, benzimidazole-derived isotonitazene and its derivatives are the current NPS opioids of concern. Hence, in this study, we implement immunopharmacotherapy wherein antibodies are produced with high titers and nanomolar affinity to multiple benzimidazole-derived NPS opioids (BNO). Notably, these antibodies blunt psychoactive and physiological repercussions from BNO exposure, which was observed through antinociception, whole-body plethysmography, and blood-brain biodistribution studies. Moreover, we detail previously unreported pharmacokinetics of these drugs, which explains the struggle of traditional pharmaceutical opioid antagonists against BNO substances. These findings provide further insight into the in vivo effects of BNO drugs and the development of effective broad-spectrum therapeutics against NPS opioids.


Assuntos
Analgésicos Opioides/imunologia , Benzimidazóis/imunologia , Drogas Ilícitas/imunologia , Vacinas Conjugadas/imunologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacocinética , Animais , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Feminino , Haptenos/química , Haptenos/imunologia , Hemocianinas/química , Hemocianinas/imunologia , Drogas Ilícitas/síntese química , Drogas Ilícitas/farmacocinética , Camundongos Endogâmicos BALB C , Nociceptividade/efeitos dos fármacos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/prevenção & controle , Vacinas Conjugadas/química
14.
Bioorg Med Chem ; 41: 116225, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034147

RESUMO

Unintentional overdose deaths related to opioids and psychostimulants have increased in prevalence due to the adulteration of these drugs with fentanyl. Synergistic effects between illicit compounds and fentanyl cause aggravated respiratory depression, leading to inadvertent fatalities. Traditional small-molecule therapies implemented in the expanding opioid epidemic present numerous problems since they interact with the same opioid receptors in the brain as the abused drugs. In this study, we report an optimized dual hapten for use as an immunopharmacotherapeutic tool in order to develop antibodies capable of binding to fentanyl-contaminated heroin in the periphery, thus impeding the drugs' psychoactive effects on the central nervous system. This vaccine produced antibodies with nanomolar affinities and effectively blocked opioid analgesic effects elicited by adulterated heroin. These findings provide further insight into the development of chemically contiguous haptens for broad-spectrum immunopharmacotherapies against opioid use disorders.


Assuntos
Overdose de Drogas/prevenção & controle , Fentanila/imunologia , Haptenos/imunologia , Heroína/efeitos adversos , Heroína/química , Vacinas/imunologia , Animais , Contaminação de Medicamentos , Overdose de Drogas/mortalidade , Fentanila/efeitos adversos , Fentanila/química , Humanos , Camundongos , Transtornos Relacionados ao Uso de Opioides
15.
Tetrahedron Lett ; 712021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34054153

RESUMO

Rhodojaponin III is a grayanane-type diterpenoid natural product with a novel chemical scaffold. It shows potent antinociceptive activity and may represent a new class of natural non-opioid analgesics with a novel mode of action. We explored the Au(I)-catalyzed Conia-ene cyclization and the Mn(III)-mediated radical cyclization of alkynyl ketones for the synthesis of the bicyclo[3.2.1]octane fragment of rhodojaponin III. These strategies will be applicable in the synthesis of rhodojaponin III and analogs for future biological studies.

16.
Nature ; 590(7846): 433-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568814

RESUMO

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

17.
Sci Rep ; 11(1): 3665, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574427

RESUMO

Transposable elements cause alternative splicing (AS) in different ways, contributing to transcript diversification. Alternative polyadenylation (APA), one of the AS events, is related to the generation of mRNA isoforms in 70% of human genes. In this study, we tried to investigate AluYRa1s located at the terminal region of cynomolgus monkey genes, utilizing both computational analysis and molecular experimentation. We found that ten genes had AluYRa1 at their 3' end, and nine of these AluYRa1s were sense-oriented. Furthermore, in seven genes, AluYRa1s were expected to have a similar consensus sequence for polyadenylation cleavage. Additional computational analysis using the annotation files from the UCSC database showed that AluYRa1 was more involved in polyadenylation than in open reading frame exon splicing. To examine the extent of AluYRa1 involvement in polyadenylation, RNA-seq data from 30 normal cynomolgus monkeys were analyzed using TAPAS, a recently devised software that detects all the promising polyadenylation sites including APA sites. We observed that approximately 74% of possible polyadenylation sites in the analyzed genes were provided by sense-oriented AluYRa1. In conclusion, AluYRa1 is an Old-World monkey-specific TE, and its sense-oriented insertion at the 3'UTR region tends to provide a favorable environment for polyadenylation, diversifying gene transcripts.


Assuntos
Elementos Alu/genética , Evolução Molecular , Poliadenilação/genética , Transcrição Gênica , Regiões 3' não Traduzidas/genética , Processamento Alternativo/genética , Animais , Linhagem da Célula/genética , Humanos , Macaca fascicularis/genética , Isoformas de RNA/genética , Splicing de RNA/genética , Software
18.
J Geophys Res Atmos ; 126(16): e2021JD034888, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-35847447

RESUMO

The perfluorocarbons (PFCs), tetrafluoromethane (CF4) and hexafluoroethane (C2F6), are potent greenhouse gases with very long atmospheric lifetimes. They are emitted almost entirely from industrial sources, including the aluminum and rare earth metal smelting industries that emit them as by-products, and the semiconductor and flat panel display manufacturing industries that use them and vent unutilized amounts to the atmosphere. Despite extensive industrial efforts to quantify and curb these emissions, "top-down" PFC emission estimates derived from atmospheric measurements continue to rise and are significantly greater than reported process- and inventory-based "bottom-up" emissions. In this study, we estimate emissions of CF4 and C2F6 from East Asia, where PFC emitting industries are heavily concentrated, using a top-down approach (a Bayesian inversion) with high-frequency atmospheric measurements at Gosan (Jeju Island, South Korea) for 2008-2019. We also compile and analyze the available bottom-up CF4 and C2F6 emissions in East Asia from industrial and government reports. Our results suggest that the observed increases in global PFC emissions since 2015 are driven primarily by China's aluminum industry, with significant contributions from Japan's and Korea's semiconductor industry. Our analysis suggests that Chinese emissions occur predominantly from the aluminum industry, although their emissions per production ratio may be improving. Our results for Japan and Korea find significant discrepancies between top-down and bottom-up emissions estimates, suggesting that the effectiveness of emission reduction systems (abatement) used in their semiconductor industries may be overestimated. Overall, our top-down results for East Asia contribute significantly to reducing the gap in the global PFC emission budgets.

19.
Int J Stem Cells ; 14(1): 112-118, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33377456

RESUMO

Mesenchymal stem cell (MSC)-based therapy using gene delivery systems has been suggested for degenerative diseases. Although MSC-based clinical applications are effective and safe, the mode of action remains unclear. Researchers have commonly applied viral-based gene modification because this system has efficient vehicles. While viral transfection carries many risks, such as oncogenes and chromosomal integration, nonviral gene delivery techniques are less expensive, easier to handle, and safe, although they are less efficient. The electroporation method, which uses Nucleofection technology, provides critical opportunities for hard-to-transfect primary cell lines, including MSCs. Therefore, to improve the therapeutic efficacy using genetically modified MSCs, researchers must determine the optimal conditions for the introduction of the Nucleofection technique in MSCs. Here, we suggest optimal methods for gene modification in PD-MSCs using an electroporation gene delivery system for clinical application.

20.
Lab Invest ; 101(3): 304-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33303971

RESUMO

Angiogenesis plays an important role in damaged organ or tissue and cell regeneration and ovarian development and function. Primary ovarian insufficiency (POI) is a prevalent pathology in women under 40. Conventional treatment for POI involves hormone therapy. However, due to its side effects, an alternative approach is desirable. Human mesenchymal stem cells (MSCs) from various sources restore ovarian function; however, they have many limitations as stem cell sources. Therefore, it is desirable to study the efficacy of placenta-derived MSCs (PD-MSCs), which possess many advantages over other MSCs, in a rat model of ovarian dysfunction. Here, we investigated the restorative effect of PD-MSCs on injured ovaries in ovariectomized (OVX) rats and the ability of intravenous transplantation (Tx) of PD-MSCs (5 × 105) to enhance ovarian vasculature and follicular development. ELISA analysis of serum revealed that compared to the non-transplantation (NTx) group, the Tx group showed significantly increased levels of anti-Müllerian hormone, follicle stimulating hormone, and estradiol (E2) (*P < 0.05). In addition, histological analysis showed more mature follicles and less atresia and restoration of expanded blood vessels in the ovaries of the OVX PD-MSC Tx group than those of the NTx group (*P < 0.05). Furthermore, folliculogenesis-related gene expression was also significantly increased in the PD-MSC Tx group (*P < 0.05). Vascular endothelial growth factor (VEGF) and VEGF receptor 2 expressions were increased in the ovaries of the OVX PD-MSC Tx group compared to the NTx group through PI3K/AKT/mTOR and GSK3ß/ß-catenin pathway activation. Interestingly, ex vivo cocultivation of damaged ovaries and PD-MSCs or treatment with recombinant VEGF (50 ng/ml) increased folliculogenic factors and VEGF signaling pathways. Notably, compared to recombinant VEGF, PD-MSCs significantly increased folliculogenesis and angiogenesis (*P < 0.05). These findings suggest that VEGF secreted by PD-MSCs promotes follicular development and ovarian function after OVX through vascular remodeling. Therefore, these results provide fundamental data for understanding the therapeutic effects and mechanism of stem cell therapy based on PD-MSCs and provide a theoretical foundation for their application for obstetrical and gynecological diseases, including infertility and menopause.


Assuntos
Células-Tronco Mesenquimais , Ovário , Placenta/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/fisiologia , Animais , Feminino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ovário/irrigação sanguínea , Ovário/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA