Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Microbiol Biotechnol ; 34(4): 838-845, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247212

RESUMO

Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.


Assuntos
Álcool Desidrogenase , Aldeído Oxirredutases , Etanol , Lactobacillales , Probióticos , Animais , Etanol/metabolismo , Álcool Desidrogenase/metabolismo , Ratos , Masculino , Probióticos/administração & dosagem , Lactobacillales/metabolismo , Concentração Alcoólica no Sangue , Fígado/metabolismo , Fígado/efeitos dos fármacos , Administração Oral , Leuconostoc mesenteroides , Aldeído Desidrogenase/metabolismo , Levilactobacillus brevis/metabolismo , Ratos Sprague-Dawley , Alimentos Fermentados/microbiologia
2.
Food Res Int ; 158: 111533, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840231

RESUMO

A high-fat diet (HFD) induces low-grade, chronic inflammation throughout the body including the hypothalamus, a key brain region involved in the control of satiety and energy expenditure in central nervous system (CNS). Kimchi is a traditional fermented Korean food, which is recognized as a healthy food. In this study, we evaluated its ability to suppress the obesity-induced inflammation in mice fed an HFD. Male C57BL/6 mice were fed an HFD or HFD with kimchi (pH 5.2 âˆ¼ 5.8). Oral administration of kimchi significantly reduced the body weight, fat mass gain, and levels of pro-inflammatory cytokines in serum. Furthermore, kimchi diminished the HFD-induced activation of astrocyte and microglial cells (reactive gliosis, a hallmark of CNS injury and inflammation) in hypothalamus region. IgG accumulation assay showed that kimchi ingestion suppressed HFD-induced breakage of the blood brain barrier (BBB) via upregulating the expression of tight junction molecules in cerebrovascular endothelial cells. In addition, kimchi modulated gut microbiome profiles, which showed an increase in the abundance of Akkermansia muciniphila. Moreover, kimchi enhanced acetate level and BBB integrity in A. muciniphila-colonized gnotobiotic mice. These results suggest that kimchi may exert beneficial effects to prevent and ameliorate obesity and associated neuroinflammation by changing gut microbiota composition and short-chain fatty acids production.


Assuntos
Eixo Encéfalo-Intestino , Alimentos Fermentados , Animais , Células Endoteliais/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Obesidade/prevenção & controle
3.
J Microbiol Biotechnol ; 31(11): 1568-1575, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528915

RESUMO

Obesity and related metabolic diseases are major problems worldwide. Some probiotics are currently considered potential therapeutic strategies for obesity. We aimed to investigate the antiobesity efficacy of Latilactobacillus sakei WIKIM31 in obese mice induced by a high fat diet. The administration of a high-fat diet with L. sakei WIKIM31 reduced body weight gain, epididymal fat mass, triglyceride and total cholesterol levels in the blood, and remarkably decreased the expression of lipogenesis-related genes in the epididymal adipose tissue and liver. Interestingly, intake of L. sakei WIKIM31 improved gut barrier function by increasing the gene expression of tight junction proteins and suppressing the inflammatory responses. Additionally, L. sakei WIKIM31 enhanced the production of short-chain fatty acids, such as butyrate and propionate, in the intestinal tract. These results showed that L. sakei WIKIM31 can be used as a potential therapeutic probiotic for obesity.


Assuntos
Inflamação/prevenção & controle , Latilactobacillus sakei , Metabolismo dos Lipídeos , Obesidade/prevenção & controle , Probióticos , Aumento de Peso , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
4.
J Microbiol ; 58(5): 387-394, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32279278

RESUMO

Two bacterial strains designated NKC220-2T and NKC851-2 were isolated from commercial kimchi from different areas in Korea. The strains were Gram-positive, aerobic, oxidaseand catalase-positive, rod-shaped, spore-forming, non-motile, and halophilic bacteria. Both strains grew without NaCl, unlike type species in the genus Lentibacillus. The optimal pH for growth was 8.0, higher than that of the type species in the genus Lentibacillus, although growth was observed at pH 5.5-9.0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the two strains (99.3-99.9% similarity) are grouped within the genus Lentibacillus and most closely related to Lentibacillus juripiscarius IS40-3T (97.4-97.6% similarity) isolated from fish sauce in Thailand. OrthoANI value between two novel strains and Lentibacillus lipolyticus SSKP1-9T (79.5-79.6% similarity) was far lower than the species demarcation threshold. Comparative genomic analysis displayed differences between the two strains as well as among other strains belonging to Lentibacillus. Furthermore, each isolate had strain-specific groups of orthologous genes based on pangenome analysis. Genomic G + C contents of strains NKC-220-2T and NKC851-2 were 41.9 and 42.2 mol%, respectively. The strains contained meso-diaminopimelic acid in their cell walls, and the major menaquinone was menaquinone-7. Phosphatidylglycerol, diphosphatidylglycerol, and an unidentified glycolipid, aminophospholipid, and phospholipid were the major polar lipid components of both strains. The major cellular fatty acids of the strains were anteiso-C15:0 and anteiso-C17:0. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic features, strains NKC220-2T and NKC851-2 represent novel species of the genus Lentibacillus, for which the name Lentibacillus cibarius sp. nov. is proposed. The type strain is NKC220-2T (= KACC 21232T = JCM 33390T).


Assuntos
Bacillaceae/classificação , Brassica/microbiologia , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Filogenia , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
J Microbiol ; 57(11): 997-1002, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31659686

RESUMO

A Gram-stain-positive, rod-shaped, alkalitolerant, and halophilic bacterium-designated as strain NKC3-5T-was isolated from kimchi that was collected from the Geumsan area in the Republic of Korea. Cells of isolated strain NKC3-5T were 0.5-0.7 µm wide and 1.4-2.8 µm long. The strain NKC3-5T could grow at up to 20.0% (w/v) NaCl (optimum 10%), pH 6.5-10.0 (optimum pH 9.0), and 25-40°C (optimum 35°C). The cells were able to reduce nitrate under aerobic conditions, which is the first report in the genus Salicibibacter. The genome size and genomic G + C content of strain NKC3-5T were 3,754,174 bp and 45.9 mol%, respectively; it contained 3,630 coding sequences, 16S rRNA genes (six 16S, five 5S, and five 23S), and 59 tRNA genes. Phylogenetic analysis based on 16S rRNA showed that strain NKC3-5T clustered with bacterium Salicibibacter kimchii NKC1-1T, with a similarity of 96.2-97.6%, but formed a distinct branch with other published species of the family Bacillaceae. In addition, OrthoANI value between strain NKC3-5T and Salicibibacter kimchii NKC1-1T was far lower than the species demarcation threshold. Using functional genome annotation, the result found that carbohydrate, amino acid, and vitamin metabolism related genes were highly distributed in the genome of strain NKC3-5T. Comparative genomic analysis revealed that strain NKC3-5T had 716 pan-genome orthologous groups (POGs), dominated with carbohydrate metabolism. Phylogenomic analysis based on the concatenated core POGs revealed that strain NKC3-5T was closely related to Salicibibacter kimchii. The predominant polar lipids were phosphatidylglycerol and two unidentified lipids. Anteiso-C15:0, iso-C17:0, anteiso-C17:0, and iso-C15:0 were the major cellular fatty acids, and menaquinone-7 was the major isoprenoid quinone present in strain NKC3-5T. Cell wall peptidoglycan analysis of strain NKC3-5T showed that meso-diaminopimelic acid was the diagnostic diamino acid. The phephenotypic, genomic, phylogenetic, and chemotaxonomic properties reveal that the strain represents a novel species of the genus Salicibibacter, for which the name Salicibibacter halophilus sp. nov. is proposed, with the type strain NKC3-5T (= KACC 21230T = JCM 33437T).


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Alimentos Fermentados/microbiologia , Filogenia , Bacillaceae/genética , Bacillaceae/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/metabolismo , Ácidos Graxos/química , Genes Bacterianos/genética , Genômica , Halobacteriales , Concentração de Íons de Hidrogênio , Peptidoglicano/química , RNA Ribossômico 16S/genética , República da Coreia , Tolerância ao Sal , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Sequenciamento Completo do Genoma
6.
J Microbiol ; 56(12): 880-885, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30361979

RESUMO

A moderately halophilic and alkalitolerant bacterial strain NKC1-1T was isolated from commercial kimchi in Korea. Strain NKC1-1T was Gram-stain-positive, aerobic, rod-shaped, non-motile, and contained diaminopimelic acid-type murein. Cell growth was observed in a medium containing 0-25% (w/v) NaCl (optimal at 10% [w/v]), at 20-40°C (optimal at 37°C) and pH 6.5-10.0 (optimal at pH 9.0). The major isoprenoid quinone of the isolate was menaquinone-7, and the major polar lipids were phosphatidylglycerol and unidentified phospholipids. Cell membrane of the strain contained iso-C17:0 and anteiso-C15:0 as the major fatty acids. Its DNA G + C content was 45.2 mol%. Phylogenetic analysis indicated the strain to be most closely related to Geomicrobium halophilum with 92.7-92.9% 16S rRNA gene sequence similarity. Based on polyphasic taxonomic evaluation with phenotypic, phylogenetic, and chemotaxonomic analyses, the strain represents a novel species in a new genus, for which the name Salicibibacter kimchii gen. nov., sp. nov. is proposed (= CECT 9537T; KCCM 43276T).


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Alimentos Fermentados/microbiologia , Filogenia , Bacillaceae/genética , Bacillaceae/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Peptidoglicano/análise , Fenótipo , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Especificidade da Espécie
7.
Mol Nutr Food Res ; 62(24): e1800329, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362639

RESUMO

SCOPE: The gut microbiota has been linked to diet-induced obesity, and microorganisms that influence obesity have important health implications. In this study, the anti-obesity effects of two Lactobacillus plantarum strains (DSR M2 and DSR 920) isolated from kimchi are investigated. METHODS AND RESULTS: Mice are fed a normal or high-fat diet with or without DSR M2 and DSR 920 (DSR, 1 × 109 CFU d-1 ) for 12 weeks. DSR improves the obesity state, as evidenced by the i) suppressed obesity-related markers, e.g., gains in body weight and fat mass, ii) reduced serum and liver triglyceride levels, iii) upregulated ß-oxidation and downregulated lipogenesis-related genes in the liver, iv) reduced serum leptin levels, v) altered microbial communities, vi) increased regulatory T cell immunity, and vii) suppressed inflammatory response. In addition, correlation analysis shows that Akkermansia muciniphila and the genus Anaerostipes, which are increased in the DSR group, are negatively correlated with obesity-related markers, but Mucispirillum schaedleri, which is increased in the high-fat-diet (HFD) group, is positively correlated with serum leptin level. CONCLUSION: Lactobacillus plantarum DSR M2 and DSR 920 are candidate probiotics for the prevention and amelioration of obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Microbioma Gastrointestinal/fisiologia , Lactobacillus plantarum , Obesidade/etiologia , Linfócitos T Reguladores/fisiologia , Células 3T3-L1/metabolismo , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Triglicerídeos/metabolismo , Aumento de Peso
8.
Front Immunol ; 9: 1905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154801

RESUMO

Lactobacillus sakei WIKIM30 is a Gram-positive facultative anaerobic bacterium isolated from kimchi, a Korean fermented vegetable food. In this study, we found that WIKIM30 promoted regulatory T cell (Treg) differentiation by inducing dendritic cells with tolerogenic properties. The production of the T helper (Th) 2-associated cytokine interleukin (IL)-4 was decreased, but that of the Treg-associated cytokine IL-10 was increased in splenocytes from ovalbumin-sensitized mice treated with WIKIM30. We also investigated the inhibitory capacity of WIKIM30 on the development of 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD), a Th2-dominant allergic disease in mice. Oral administration of L. sakei WIKIM30 significantly reduced AD-like skin lesions and serum immunoglobulin E and IL-4 levels while decreasing the number of CD4+ T cells and B cells and the levels of Th2 cytokines (IL-4, IL-5, and IL-13) in peripheral lymph nodes and enhancing Treg differentiation and IL-10 secretion in mesenteric lymph nodes. In addition, WIKIM30 modulated gut microbiome profiles that were altered in AD mice, which showed increases in Arthromitus and Ralstonia and a decrease in Ruminococcus abundance. These changes were reversed by WIKIM30 treatment. Notably, the increase in Ruminococcus was highly correlated with Treg-related responses and may contribute to the alleviation of AD responses. Together, these results suggest that oral administration of L. sakei WIKIM30 modulates allergic Th2 responses enhancing Treg generation and increases the relative abundance of intestinal bacteria that are positively related to Treg generation, and therefore has therapeutic potential for the treatment of AD.


Assuntos
Dermatite Atópica/etiologia , Microbioma Gastrointestinal , Latilactobacillus sakei/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Camundongos , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
9.
J Microbiol ; 55(12): 933-938, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214493

RESUMO

A Gram-stain-positive, halophilic, rod-shaped, non-motile, spore forming bacterium, strain NKC1-2T, was isolated from kimchi, a Korean fermented food. Comparative analysis based on 16S rRNA gene sequence demonstrated that the isolated strain was a species of the genus Virgibacillus. Strain NKC1-2T exhibited high level of 16S rRNA gene sequence similarity with the type strains of Virgibacillus xinjiangensis SL6-1T (96.9%), V. sediminis YIM kkny3T (96.8%), and V. salarius SA-Vb1T (96.7%). The isolate grew at pH 6.5-10.0 (optimum, pH 8.5-9.0), 0.0-25.0% (w/v) NaCl (optimum, 10-15% NaCl), and 15-50°C (optimum, 37°C). The major menaquinone in the strain was menaquinone-7, and the main peptidoglycan of the strain was meso-diaminopimelic acid. The predominant fatty acids of the strain were iso-C14:0, anteisio-C15:0, iso- C15:0, and iso-C16:0 (other components were < 10.0%). The polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G + C content of NKC1-2T was 42.5 mol%. On the basis of these findings, strain NKC1-2T is proposed as a novel species in the genus Virgibacillus, for which the name Virgibacillus kimchii sp. nov. is proposed (=KACC 19404T =JCM 32284T). The type strain of Virgibacillus kimchii is NKC1-2T.


Assuntos
Brassica/microbiologia , Alimentos Fermentados/microbiologia , Cloreto de Sódio/metabolismo , Virgibacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Virgibacillus/classificação , Virgibacillus/genética , Virgibacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA