Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ChemMedChem ; 18(1): e202200497, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259357

RESUMO

Aminoglycosides (AGs) are broad-spectrum antibiotics used to treat bacterial infections. Over the last two decades, studies have reported the potential of AGs in the treatment of genetic disorders caused by nonsense mutations, owing to their ability to induce the ribosomes to read through these mutations and produce a full-length protein. However, the principal limitation in the clinical application of AGs arises from their high toxicity, including nephrotoxicity and ototoxicity. In this study, five novel pseudo-trisaccharide analogs were synthesized by chemo-enzymatic synthesis by acid hydrolysis of commercially available AGs, followed by an enzymatic reaction using recombinant substrate-flexible KanM2 glycosyltransferase. The relationships between their structures and biological activities, including the antibacterial, nephrotoxic, and nonsense readthrough inducer (NRI) activities, were investigated. The absence of 1-N-acylation, 3',4'-dideoxygenation, and post-glycosyl transfer modifications on the third sugar moiety of AGs diminishes their antibacterial activities. The 3',4'-dihydroxy and 6'-hydroxy moieties regulate the in vitro nephrotoxicity of AGs in mammalian cell lines. The 3',4'-dihydroxy and 6'-methyl scaffolds are indispensable for the ex vivo NRI activity of AGs. Based on the alleviated in vitro antibacterial properties and nephrotoxicity, and the highest ex vivo NRI activity among the five compounds, a kanamycin analog (6'-methyl-3''-deamino-3''-hydroxykanamycin C) was selected as a novel AG hit for further studies on human genetic disorders caused by premature transcriptional termination.


Assuntos
Códon sem Sentido , Trissacarídeos , Animais , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/uso terapêutico , Antibacterianos/química , Inibidores da Síntese de Proteínas/farmacologia , Mamíferos/genética
2.
Enzyme Microb Technol ; 161: 110113, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998478

RESUMO

Isoflavonoids are of great interest due to their human health-promoting properties, which have resulted in studies on exploiting these phytochemicals as hotspots in diverse bio -industries. Biocatalytic glycosylation of isoflavonoid aglycones to glycosides has attracted marked interests because it enable the biosynthesis of isoflavonoid glycosides with high selectivity under mild conditions, and also provide an environmentally friendly option for the chemical synthesis. Thus, these inspired us to exploit new flexible and effective glycosyltransferases from microbes for making glycosides attractive compounds that are in high demand in several industries. Most recently, we have reported the functional characterization of a bacterial-origin recombinant glycosyltransferase (MeUGT1). Herein, more detailed kinetic characteristics of this biocatalyst, using a number of glycosyl donor substrates, were examined for further investigation of its biocatalytic applicability, enabling it feasible to biosynthesize new glycosides; phenoxodiol-4'-O-α-glucuronide, phenoxodiol-4'-O-α-(2''-N-acetyl)glucosaminide, phenoxodiol-4'-O-α-galactoside, phenoxodiol-4'-O-α-(2''-N-acetyl)galactosaminide and phenoxodiol-4'-O-α-(2''-deoxy)glucoside. The thorough kinetic analyses revealed that while the recombinant enzyme can utilize, albeit with different substrate preference and catalytic efficiency, a total five different nucleotide sugars as glycosyl donors, exhibiting its promiscuity towards glycosyl donors. This is the first report that a recombinant glycosyltransferase MeUGT1 that can regio-specifically glycosylate C4'-hydroxyl function of semi-synthetic phenoxodiol isoflavene to biosynthesize a series of unnatural phenoxodiol-4'-O-α-glycosides.


Assuntos
Glicosiltransferases , Isoflavonas , Glicosídeos/química , Glicosilação , Glicosiltransferases/metabolismo , Humanos
3.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883887

RESUMO

Simple phenolics (SPs) and their glycosides have recently gained much attention as functional skin-care resources for their anti-melanogenic and antioxidant activities. Enzymatic glycosylation of SP aglycone make it feasible to create SP glycosides with updated bioactive potentials. Herein, a glycosyltransferase (GT)-encoding gene was cloned from the fosmid libraries of Streptomyces tenjimariensis ATCC 31603 using GT-specific degenerate PCR followed by in silico analyses. The recombinant StSPGT was able to flexibly catalyze the transfer of two glycosyl moieties towards two SP acceptors, (hydroxyphenyl-2-propanol [HPP2] and hydroxyphenyl-3-propanol [HPP3]), generating stereospecific α-anomeric glycosides as follows: HPP2-O-α-glucoside, HPP2-O-α-2″-deoxyglucoside, HPP3-O-α-glucoside and HPP3-O-α-2″-deoxyglucoside. This enzyme seems not only to prefer UDP-glucose and HPP2 as a favorable glycosyl donor and acceptor, respectively but also differentiates the positional difference of the hydroxyl function as acceptor catalytic sites. Paired in vitro and in vivo antioxidant assays represented SPs and their corresponding glycosides as convincing antioxidants in a time- and concentration-dependent manner by scavenging DPPH radicals and intracellular ROS. Even compared to the conventional agents, HPP2 and glycoside analogs displayed improved tyrosinase inhibitory activity in vitro and still suppressed in vivo melanogenesis. Both HPP2 glycosides are further likely to exert the best inhibitory activity against elastase, eventually highlighting these glycosides with enhanced anti-melanogenic and antioxidant activities as promising anti-wrinkle hits.

4.
J Microbiol Biotechnol ; 32(5): 657-662, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35131959

RESUMO

Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.


Assuntos
Glicosiltransferases , Micromonospora , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosídeos , Glicosídeos , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Isoflavonas , Masculino , Micromonospora/genética , Micromonospora/metabolismo
5.
Front Microbiol ; 12: 725916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512603

RESUMO

With the constant emergence of multidrug-resistant gram-negative bacteria, interest in the development of new aminoglycoside (AG) antibiotics for clinical use has increased. The regioselective modification of AG scaffolds could be an efficient approach for the development of new antibiotics with improved therapeutic potency. We enzymatically synthesized three amikacin analogs containing structural modifications in the amino groups and evaluated their antibacterial activity and cytotoxicity. Among them, 6'-N-acyl-3″-N-methylated analogs showed improved antibacterial activity against the multidrug-resistant gram-negative bacteria tested, while exhibiting reduced in vitro nephrotoxicity compared to amikacin. This study demonstrated that the modifications of the 6'-amino group as well as the 3″-amino group have noteworthy advantages for circumventing the AG-resistance mechanism. The regiospecific enzymatic modification could be exploited to develop novel antibacterial agents with improved pharmacological potential.

6.
Nat Chem Biol ; 16(7): 810, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32488179

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Biomolecules ; 10(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545254

RESUMO

The development of new aminoglycoside (AG) antibiotics has been required to overcome the resistance mechanism of AG-modifying enzymes (AMEs) of AG-resistant pathogens. The AG acetyltransferase, AAC(6')-APH(2″), one of the most typical AMEs, exhibiting substrate promiscuity towards a variety of AGs and acyl-CoAs, was employed to enzymatically synthesize new 6'-N-acylated isepamicin (ISP) analogs, 6'-N-acetyl/-propionyl/-malonyl ISPs. They were all active against the ISP-resistant Gram-negative bacteria tested, and the 6'-N-acetyl ISP displayed reduced toxicity compared to ISP in vitro. This study demonstrated the importance of the modification of the 6'-amino group in circumventing AG-resistance and the potential of regioselective enzymatic modification of AG scaffolds for the development of more robust AG antibiotics.


Assuntos
Antibacterianos/síntese química , Antibacterianos/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Acilação/genética , Antibacterianos/uso terapêutico , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/química , Gentamicinas/metabolismo , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Testes de Toxicidade
8.
Nat Prod Rep ; 37(3): 301-311, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31501843

RESUMO

Covering: up to 2019 There is significant demand for new aminoglycoside antibiotics due to the widespread emergence of multidrug-resistant Gram-negative bacteria and their high toxicity, but these are not easily accessible in nature because their biosynthetic gene clusters are less commonly found in actinomycetes than are other natural products. Mining minor aminoglycoside components whose pharmacological activity has not yet been assessed could be an alternative approach for the development of next-generation antibiotics for use in the post-antibiotic era. Here, we review the biosynthetic steps responsible for the structural diversity of aminoglycosides and highlight current developments regarding the use of natural minor and semi-synthetic aminoglycosides as promising therapeutic leads or candidates.


Assuntos
Aminoglicosídeos/biossíntese , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/química , Animais , Antibacterianos/química , Gentamicinas/biossíntese , Humanos , Metilação , Fosforilação
9.
Nat Chem Biol ; 15(5): 549, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30728495

RESUMO

In the version of this article originally published, reference to another structure of GenB1 was omitted (Dow, G. T., Thoden, J. B., & Holden, H. M. The three-dimensional structure of NeoB: an aminotransferase involved in the biosynthesis of neomycin. Protein Sci. 27, 945-956 (2018)). This paper is now cited as reference 32, and "Another structure of GenB1 was also reported independently during the revision of this article32" was added to the text in the Discussion section. This error has been corrected in the PDF and HTML versions of the article.

10.
J Microbiol Biotechnol ; 29(3): 367-372, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661323

RESUMO

Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'- dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ΔforP mutant ( or ΔistP mutant strain) successfully restored the biosynthesis of 3',4'- dideoxy fortimicins and istamycins , thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Genes Bacterianos/genética , Fosfotransferases/genética , Sequência de Aminoácidos , Aminoglicosídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nucleotídeos de Desoxiguanina/biossíntese , Nucleotídeos de Desoxiguanina/genética , Didesoxinucleotídeos/biossíntese , Didesoxinucleotídeos/genética , Gentamicinas/biossíntese , Micromonospora/genética , Micromonospora/metabolismo , Alinhamento de Sequência , Streptomyces/genética , Streptomyces/metabolismo
11.
Nat Chem Biol ; 15(3): 295-303, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643280

RESUMO

Gentamicin B (GB), a valuable starting material for the preparation of the semisynthetic aminoglycoside antibiotic isepamicin, is produced in trace amounts by the wild-type Micromonospora echinospora. Though the biosynthetic pathway to GB has remained obscure for decades, we have now identified three hidden pathways to GB production via seven hitherto unknown intermediates in M. echinospora. The narrow substrate specificity of a key glycosyltransferase and the C6'-amination enzymes, in combination with the weak and unsynchronized gene expression of the 2'-deamination enzymes, limits GB production in M. echinospora. The crystal structure of the aminotransferase involved in C6'-amination explains its substrate specificity. Some of the new intermediates displayed similar premature termination codon readthrough activity but with reduced toxicity compared to the natural aminoglycoside G418. This work not only led to the discovery of unknown biosynthetic routes to GB, but also demonstrated the potential to mine new aminoglycosides from nature for drug discovery.


Assuntos
Gentamicinas/biossíntese , Gentamicinas/metabolismo , Aminoglicosídeos/biossíntese , Antibacterianos , Proteínas de Bactérias , Vias Biossintéticas , Expressão Gênica , Glicosiltransferases/biossíntese , Glicosiltransferases/metabolismo , Micromonospora/metabolismo , Especificidade por Substrato
12.
J Ind Microbiol Biotechnol ; 46(3-4): 445-458, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30415291

RESUMO

Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.


Assuntos
Antibacterianos/química , Lactonas/química , Macrolídeos/química , Antibacterianos/biossíntese , Escherichia coli/metabolismo , Policetídeo Sintases/metabolismo , Streptomyces/metabolismo
13.
Front Microbiol ; 9: 2333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319595

RESUMO

2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase-encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codon-optimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.

14.
Curr Opin Biotechnol ; 48: 33-41, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28365471

RESUMO

Despite decades long clinical usage, aminoglycosides still remain a valuable pharmaceutical source for fighting Gram-negative bacterial pathogens, and their newly identified bioactivities are also renewing interest in this old class of antibiotics. As Nature's gift, some aminoglycosides possess natural defensive structural elements that can circumvent drug resistance mechanisms. Thus, a detailed understanding of aminoglycoside biosynthesis will enable us to apply Nature's biosynthetic strategy towards expanding structural diversity in order to produce novel and more robust aminoglycoside analogs. The engineered biosynthesis of novel aminoglycosides is required not only to develop effective therapeutics against the emerging 'superbugs' but also to reinvigorate antibiotic lead discovery in readiness for the emerging post-antibiotic era.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Vias Biossintéticas , Engenharia Metabólica/métodos , Aminoglicosídeos/isolamento & purificação , Animais , Antibacterianos/isolamento & purificação , Vias Biossintéticas/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Humanos
15.
Biochem Pharmacol ; 134: 56-73, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793719

RESUMO

Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Técnicas de Química Combinatória/métodos , Alcaloides/biossíntese , Alcaloides/isolamento & purificação , Animais , Humanos , Nucleosídeos/biossíntese , Nucleosídeos/isolamento & purificação , Policetídeos/isolamento & purificação
16.
Biol Pharm Bull ; 39(12): 2042-2051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904047

RESUMO

The anti-osteoarthritic activity of the methanol fraction of deer bone oil extract (DBO-M) was evaluated in interleukin (IL)-1ß-inflamed primary rabbit chondrocytes and in rats with monosodium iodoacetate (MIA)-induced osteoarthritis. The active compound in DBO-M was analyzed using a direct infusion liquid chromatography quadrupole (LCQ) ion-trap electrospray ionization (ESI)-mass spectrometer (MS). DBO-M significantly suppressed the IL-1ß-induced sulfated-glycosaminoglycan (s-GAG) release from chondrocyte, and lowered mRNA levels of the collagen-degrading enzymes matrix metalloproteinase (MMP)-1 and MMP-3 in a dose-dependent manner. Upon treatment with high doses of DBO-M, the levels of IL-1ß, tumor necrosis factor (TNF)-α, and IL-6 decreased by around 40, 70, and 50%, respectively, compared to the control in the serum of rats with MIA-induced osteoarthritis. Bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) increased by over 40% in rats treated with DBO-M compared to the values reported for the MIA-treated control group, while trabecular separation (Tb.Sp) showed a significant decrease (ca. 38%), as confirmed through micro-computed tomography (CT) analysis of MIA-induced destruction of articular bones. Furthermore, direct infusion ESI-MS analysis showed that DBO-M contains gangliosides, which are glycosphingolipids with monosialic acid (GM3), as a major compound. Our results suggest that DBO-M effectively improves MIA-induced osteoarthritis by suppressing inflammatory responses, and that gangliosides could be one of the DBO-derived anti-inflammatory components.


Assuntos
Artrite Experimental/tratamento farmacológico , Osso e Ossos/química , Misturas Complexas/uso terapêutico , Óleos/química , Osteoartrite/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Artrite Experimental/sangue , Artrite Experimental/induzido quimicamente , Artrite Experimental/diagnóstico por imagem , Cartilagem Articular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/sangue , Condrócitos/efeitos dos fármacos , Misturas Complexas/farmacologia , Citocinas/sangue , Cervos , Ácido Iodoacético , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Osteoartrite/sangue , Osteoartrite/induzido quimicamente , Osteoartrite/diagnóstico por imagem , Substâncias Protetoras/farmacologia , RNA Mensageiro/metabolismo , Coelhos , Ratos Wistar , Triglicerídeos/sangue , Microtomografia por Raio-X
17.
J Sep Sci ; 39(24): 4712-4722, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27778478

RESUMO

A high-performance liquid chromatography with electrospray ionization ion trap tandem mass spectrometry method was developed and validated for the robust profiling and characterization of biosynthetic congeners in the 2-deoxy-aminocyclitol istamycin pathway, from the fermentation broth of Streptomyces tenjimariensis ATCC 31603. Gradient elution on an Acquity CSH C18 column was performed with a gradient of 5 mM aqueous pentafluoropropionic acid and 50% acetonitrile. Sixteen natural istamycin congeners were profiled and quantified in descending order; istamycin A, istamycin B, istamycin A0 , istamycin B0 , istamycin B1 , istamycin A1 , istamycin C, istamycin A2 , istamycin C1 , istamycin C0 , istamycin X0 , istamycin A3 , istamycin Y0 , istamycin B3 , and istamycin FU-10 plus istamycin AP. In addition, a total of five sets of 1- or 3-epimeric pairs were chromatographically separated using a macrocyclic glycopeptide-bonded chiral column. The lower limit of quantification of istamycin-A present in S. tenjimariensis fermentation was estimated to be 2.2 ng/mL. The simultaneous identification of a wide range of 2-deoxy-aminocyclitol-type istamycin profiles from bacterial fermentation was determined for the first time by employing high-performance liquid chromatography with tandem mass spectrometry analysis and the separation of istamycin epimers.


Assuntos
Aminoglicosídeos/biossíntese , Antibacterianos/biossíntese , Streptomyces/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
18.
AMB Express ; 6(1): 52, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27485517

RESUMO

Kinetics of a recombinant uridine diphosphate-glucose: sterol glycosyltransferase from Micromonospora rhodorangea ATCC 27932 (MrSGT) were studied using a number of sterols (including phytosterols) as glycosyl acceptors. The lowest K m value and the highest catalytical efficiency (k cat/K m) were found when ß-sitosterol was the glycosyl acceptor in the enzymatic reaction. In contrast to the enzyme's flexibility toward the glycosyl acceptor substrate, this recombinant enzyme was highly specific to uridine diphosphate (UDP)-glucose as the donor substrate. Besides, the UDP-glucose-dependent MrSGT was able to attach one glucose moiety specifically onto the C-3 hydroxyl group of other phytosterols such as fucosterol and gramisterol, yielding stereo-specific fucosterol-3-O-ß-D-glucoside and gramisterol-3-O-ß-D-glucoside, respectively. Based on kinetic data obtained from the enzyme's reactions using five different sterol substrates, the significance of the alkene (or ethylidene) side chains on the C-24 position in the sterol scaffolds was described and the possible relationship between the substrate structure and enzyme activity was discussed. This is the first report on the enzymatic bioconversion of the above two phytosteryl 3-O-ß-glucosides, as well as on the discovery of a stereospecific bacterial SGT which can attach a glucose moiety in ß-conformation at the C-3 hydroxyl group of diverse sterols, thus highlighting the catalytic potential of this promiscuous glycosyltransferase to expand the structural diversity of steryl glucosides.

19.
Anal Bioanal Chem ; 408(6): 1667-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26753981

RESUMO

In this study, an efficient high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-ion trap-tandem mass spectrometry (MS/MS) was developed for the identification of the biosynthetic congeners involved in the aminocyclitol aminoglycosidic fortimicin pathway from Micromonospora olivasterospora fermentation. The usage of both acid extraction (pH ∼2.5) followed by an cationic-exchanging SPE cleanup and pentafluoropropionic acid mediated ion-pairing chromatography with ESI-ion trap-MS/MS detection was determined to be sufficiently practical to profile the fortimicin (FOR) congeners produced in a culture broth. The limit of the quantification for the fortimicin A (FOR-A) standard spiked in the culture broth was ∼1.6 ng mL(-1). The average recovery rate was 93.6%, and the intra- and inter-day precisions were <5% with accuracy in the range from 87.1 to 94.2%. Moreover, the epimeric mixtures including FOR-KH, FOR-KR, and FOR-B were separately resolved through a macrocyclic glycopeptide (teicoplanin)-bonded chiral column. As a result, ten natural FOR pseudodisaccharide analogs were identified and semi-quantified in descending order as follows: FOR-A, FOR-B, DCM, FOR-KH plus FOR-KR, FOR-KK1, FOR-AP, FOR-KL1, FOR-AO, and FOR-FU-10. This is the first report on both the simultaneous characterization of diverse structurally closely related FORs derived from bacterial fermentation using HPLC-ESI-ion trap-MS/MS analysis and the chromatographic separation of the three FOR epimers.


Assuntos
Aminoglicosídeos/análise , Aminoglicosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Micromonospora/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminoglicosídeos/metabolismo , Fermentação , Limite de Detecção , Espectroscopia de Ressonância Magnética , Espectrometria de Massas em Tandem/métodos
20.
J Microbiol Biotechnol ; 26(3): 477-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26643965

RESUMO

A uridine diphosphate-glucose:sterol glycosyltransferase-encoding gene was isolated and cloned from the established fosmid library of Micromonospora rhodorangea ATCC 27932 that usually produces the aminoglycoside antibiotic geneticin. The gene consists of 1,185 base pairs and encodes a 41.4 kDa protein, which was heterologously expressed in Escherichia coli BL21(DE3). In silico analyses of the deduced gene product suggested that it is a member of the family 1 glycosyltransferases. The recombinant protein MrSGT was able to catalyze the transfer of a glucosyl moiety onto the C-3 hydroxy function in sterols (ß-sitosterol, campesterol, and cholesterol), resulting in the corresponding steryl glucosides (ß-sitosterol-3-O-ß-D-glucoside, campesterol-3-O-ß-D-glucoside, and cholesterol-3-O-ß-D-glucoside). This enzyme prefers phytosterols to cholesterol, and also shows substrate flexibility to some extent, in that it could recognize a number of acceptor substrates.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glucosídeos/biossíntese , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Micromonospora/enzimologia , Uridina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Glicosiltransferases/genética , Micromonospora/genética , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA