Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Pathol J ; 40(3): 235-250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835295

RESUMO

During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.

2.
mSphere ; 9(5): e0081823, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591889

RESUMO

The mycelium of the plant pathogenic fungus Fusarium graminearum exhibits distinct structures for vegetative growth, asexual sporulation, sexual development, virulence, and chlamydospore formation. These structures are vital for the survival and pathogenicity of the fungus, necessitating precise regulation based on environmental cues. Initially identified in Magnaporthe oryzae, the transcription factor Con7p regulates conidiation and infection-related morphogenesis, but not vegetative growth. We characterized the Con7p ortholog FgCon7, and deletion of FgCON7 resulted in severe defects in conidium production, virulence, sexual development, and vegetative growth. The mycelia of the deletion mutant transformed into chlamydospore-like structures with high chitin level accumulation. Notably, boosting FgABAA expression partially alleviated developmental issues in the FgCON7 deletion mutant. Chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, the chitin synthase gene Fg6550 (FGSG_06550) showed significant upregulation in the FgCON7 deletion mutant, and altering FgCON7 expression affected cell wall integrity. Further research will focus on understanding the behavior of the chitin synthase gene and its regulation by FgCon7 in F. graminearum. This study contributes significantly to our understanding of the genetic pathways that regulate hyphal differentiation and conidiation in this plant pathogenic fungus. IMPORTANCE: The ascomycete fungus Fusarium graminearum is the primary cause of head blight disease in wheat and barley, as well as ear and stalk rot in maize. Given the importance of conidia and ascospores in the disease cycle of F. graminearum, precise spatiotemporal regulation of these biological processes is crucial. In this study, we characterized the Magnaporthe oryzae Con7p ortholog and discovered that FgCon7 significantly influences various crucial aspects of fungal development and pathogenicity. Notably, overexpression of FgABAA partially restored developmental defects in the FgCON7 deletion mutant. ChIP-qPCR analysis confirmed a direct genetic link between FgABAA and FgCON7. Furthermore, our research revealed a clear correlation between FgCon7 and chitin accumulation and the expression of chitin synthase genes. These findings offer valuable insights into the genetic mechanisms regulating conidiation and the significance of mycelial differentiation in this plant pathogenic fungus.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Esporos Fúngicos , Fatores de Transcrição , Fusarium/genética , Fusarium/patogenicidade , Fusarium/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Quitina Sintase/genética , Quitina Sintase/metabolismo , Quitina/metabolismo , Deleção de Genes
3.
Pharmaceutics ; 16(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543289

RESUMO

Recently, several clinical studies have been conducted using microneedles (MNs), and various devices have been developed. This study aimed to propose and confirm the feasibility of a placebo control for activating MN clinical research. A 0.5 mm MN stamp with 42 needles was used as a treatment intervention, and a placebo stamp with four acupressure-type needles that did not penetrate was proposed and designed as a control for comparison. First, to check whether the placebo stamp did not invade the skin and to set an appropriate level of pressure to be provided during skin stimulation, two participants were stimulated with five different forces on the forearm, and then the skin was dyed. Secondly, to evaluate the validity of the placebo control group, a blinded study between the MN and placebo stamps was performed on 15 participants. We confirmed that the placebo stamp did not penetrate the skin at any intensity or location. Both types of stamps reported relatively low pain levels, but the MN stamp induced higher pain compared to the placebo stamp. Based on the speculation regarding the type of intervention received, the MN stamp was successfully blinded (random guess), whereas the placebo stamp was unblinded. However, according to a subgroup analysis, it was confirmed that the group with low skin sensitivity was completely blind. Blinding the placebo MN stamp had limited success in participants with low skin sensitivity. Future research on suitable placebo controls, considering the variations in MN stamp length and needle count, is warranted.

4.
Microbiol Res ; 283: 127692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508088

RESUMO

NADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi. In this study, we identified three putative NADKs in Fusarium graminearum-FgNadk1, FgNadk2, and FgNadk3-responsible for NAD/NADH phosphorylation. NADK-mediated formation of intracellular NADPH proved crucial for vegetative growth, sexual reproduction, and virulence. Specifically, FgNadk2, the mitochondrial NADK, played a role in oxidative stress resistance and the maintenance of mitochondrial reactive oxygen species levels. Moreover, the deletion of FgNADK2 resulted in arginine auxotrophy, contributing to the reduced fungal virulence. These findings underscore the necessity of mitochondrial NADK in fungal virulence in F. graminearum, revealing its involvement in mitochondrial redox homeostasis and the arginine biosynthetic pathway. This study provides critical insights into the interconnectedness of metabolic pathways essential for fungal growth, stress response, and pathogenicity.


Assuntos
Fusarium , NAD , Virulência , NAD/metabolismo , NADP/metabolismo , Estresse Oxidativo , Oxirredução , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
mBio ; 15(1): e0240123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112432

RESUMO

IMPORTANCE: Fusarium graminearum is a destructive fungal pathogen that causes Fusarium head blight (FHB) on a wide range of cereal crops. To control fungal diseases, it is essential to comprehend the pathogenic mechanisms that enable fungi to overcome host defenses during infection. Pathogens require an oxidative stress response to overcome host-derived oxidative stress. Here, we identify the underlying mechanisms of the Fgbzip007-mediated oxidative stress response in F. graminearum. ChIP-seq and subsequent genetic analyses revealed that the role of glutathione in pathogenesis is not dependent on antioxidant functions in F. graminearum. Altogether, this study establishes a comprehensive framework for the Fgbzip007 regulon on pathogenicity and oxidative stress responses, offering a new perspective on the role of glutathione in pathogenicity.


Assuntos
Fusarium , Virulência/genética , Estresse Oxidativo , Enxofre , Doenças das Plantas/microbiologia
6.
Front Sports Act Living ; 5: 1305175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143784

RESUMO

Since the outset of the COVID-19 pandemic, the global healthcare community has faced the challenge of understanding and addressing the ongoing and multi-faceted SARS-CoV-2 infection outcomes. As millions of individuals worldwide continue to navigate the complexities of post-hospitalization recovery, reinfection rates, and the increasing prevalence of Long-COVID symptoms, comprehensive COVID-19 rehabilitation strategies are greatly needed. Previous studies have highlighted the potential synergy between exercise and nutrition, suggesting that their integration into patient rehabilitation programs may yield improved clinical outcomes for survivors of COVID-19. Our group aimed to consolidate existing knowledge following the implementation of patient, intervention, comparison, and outcome (PICO) search strategies on the distinct and combined impacts of exercise and nutrition interventions in facilitating the recovery of COVID-19 patients following hospitalization, with a specific focus on their implications for both public health and clinical practice. The incorporation of targeted nutritional strategies alongside exercise-based programs may expedite patient recovery, ultimately promoting independence in performing activities of daily living (ADLs). Nonetheless, an imperative for expanded scientific inquiry remains, particularly in the realm of combined interventions. This mini-review underscores the compelling prospects offered by an amalgamated approach, advocating for the seamless integration of exercise and nutrition as integral components of post-hospitalization COVID-19 rehabilitation. The pursuit of a comprehensive understanding of the synergistic effects and effectiveness of exercise and nutrition stands as a crucial objective in advancing patient care and refining recovery strategies in the wake of this enduring global health crisis.

7.
J Agric Food Chem ; 71(49): 19302-19311, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38018120

RESUMO

As resistance to chemical fungicides continues to increase inFusarium graminearum, there is a growing need to develop novel disease control strategies. To discover essential genes that could serve as new disease control targets, we selected essential gene candidates that had failed to be deleted in previous studies. Thirteen genes were confirmed to be essential, either by constructing conditional promoter replacement mutants or by employing a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated editing strategy. We synthesized double-stranded RNAs (dsRNAs) targeting these essential genes and analyzed their protective effects in plants using a spray-induced gene silencing (SIGS) method. When dsRNAs targeting Fg10360, Fg13150, and Fg06123 were applied to detached barley leaves prior to fungal inoculation, disease lesions were greatly reduced. Our findings provide evidence of the potential of essential genes identified by a SIGS method to be effective targets for the control of fungal diseases.


Assuntos
Fusarium , Genes Essenciais , Inativação Gênica , Fusarium/genética , RNA de Cadeia Dupla , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
8.
Microbiol Spectr ; : e0148523, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671872

RESUMO

In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.

9.
Microbiol Spectr ; 11(3): e0528522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093014

RESUMO

Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.


Assuntos
Fusarium , Fusarium/genética , Virulência/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Integr Med Res ; 12(1): 100919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632131
11.
Commun Biol ; 5(1): 1129, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289323

RESUMO

Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi.


Assuntos
Exonucleases , RNA , Íntrons , Virulência/genética
12.
Phytomedicine ; 106: 154388, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030745

RESUMO

BACKGROUND: Warm needle acupuncture (WA) is considered a potential intervention in the treatment of osteoarthritis (OA). PURPOSE: To systematically evaluate the clinical efficacy and safety of WA in the treatment of OA. STUDY DESIGN: Systematic review and meta-analysis METHODS: Fourteen databases were searched from their inception until May 2022. Randomized controlled trials (RCTs) of WA for treating OA were identified. Study selection and data extraction were performed by two independent reviewers. The Cochrane risk of bias tool and the Grading of Recommendations Assessment, Development and Evaluation program were used to assess all included RCTs. RESULTS: A total of 66 RCTs met the inclusion criteria for this review. Most of the included studies had an unclear risk of bias, and the certainty of the evidence was very low. Twenty-four RCTs compared the effects of WA with those of oral drug therapies. Meta-analysis showed superior effects of WA for the total effective rate (risk ratio (RR): 1.22, 95% confidence interval (CI): 1.17 to 1.27, I2 = 26%, p < 0.001, 24 studies, n = 2278), pain, and function. Eight RCTs compared the effects of WA+drug therapy, and meta-analysis showed favorable effects for the total effective rate (RR: 1.27, 95% CI: 1.18 to 1.35, I2 =0%, p < 0.001, 8 studies, n = 646). Eight RCTs compared the effects of WA and intra-articular sodium hyaluronate (IASH) injection on OA and found equivalent effects of WA on the symptoms of OA. Twenty-eight RCTs compared the effects of WA+IASH injection with those of IASH injection, and meta-analysis showed superior effects of WA+IASH in terms of the total effective rate (RR: 1.15, 95% CI: 1.11 to 1.19, I2 =27.3%, p < 0.001, 25 studies, n = 2208), pain, and function. None of the RCTs reported serious adverse events. CONCLUSIONS: WA may have some distinct advantages in the treatment of OA. However, well-designed RCTs with larger sample sizes are needed.


Assuntos
Terapia por Acupuntura , Osteoartrite , Humanos , Ácido Hialurônico/uso terapêutico , Osteoartrite/terapia , Dor/tratamento farmacológico , Dor/etiologia , Resultado do Tratamento
13.
PLoS One ; 17(6): e0268855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657788

RESUMO

Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has greatly facilitated the genetic analysis of fungal pathogens. The head blight fungus, Fusarium graminearum, causes destructive losses of economically important cereal crops. The recent development of the CRISPR-Cas9 system for use with F. graminearum has enabled more efficient genome editing. In this study, we described a CRISPR-Cas9-based genome-editing tool for the direct delivery of preassembled Cas9 ribonucleoproteins (RNPs) into the protoplasts of F. graminearum. The use of RNPs significantly increased both the number of transformants and percentage of transformants in which the target gene was successfully replaced with a selectable marker. We showed that a single double-strand DNA break mediated by the Cas9 ribonucleoprotein was sufficient for gene deletion. In addition, short-homology recombination required only 50 base pair regions flanking the target gene. The high efficiency of Cas9 RNPs enables large-scale functional analysis, the identification of essential genes, and gene deletion that is difficult with conventional methods. We expect that our approach will accelerate genetic studies of F. graminearum.


Assuntos
Fusarium , Edição de Genes , Sistemas CRISPR-Cas/genética , Fusarium/genética , Edição de Genes/métodos , Ribonucleoproteínas/genética
14.
J Ethnopharmacol ; 296: 115454, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700853

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eupolyphaga sinensis Walker (ES) is an insect widely used in traditional East Asian medicine known to exhibit clinical effects on various pathological conditions. Overall, ES is a useful medicinal insect that can treat various diseases, including cancer and immune diseases. However, further mechanistic studies based on its therapeutic effects in clinical settings are required. AIM OF THE STUDY: We aimed to evaluate the current research landscape and diseases associated with ES to synthesize the clinical value of ES based on the associated diseases and underlying therapeutic mechanisms. MATERIALS AND METHODS: Embase and PubMed databases were searched for experimental studies that evaluated the therapeutic efficacy or underlying mechanisms of ES until May 2021. The evidence for each study was summarized using a narrative synthesis approach. Studies on extracted or dried whole ES and ES-derived compounds were quantitatively analyzed by year and disease type. Meanwhile, the overall research trend was confirmed for studies on ES-containing prescriptions by visualizing the disease type analysis. RESULTS: A total of 151 studies were identified, of which 51 were included in our review. There were 14 studies on extracted or dried whole ES, 15 on ES-derived compounds, and 22 on ES-containing prescriptions. ES was most commonly used for cancer-related diseases, followed by those related to endocrine function and immunity. ES regulates the cell cycle, tumor suppressor genes and proteins, immune-related biomarkers, and antioxidant molecules. CONCLUSIONS: Overall, ES is a beneficial medicinal insect that can treat various diseases, including cancer and immune diseases. However, further mechanistic studies based on its therapeutic effects in clinical settings are required.


Assuntos
Baratas , Neoplasias , Animais , Humanos , Insetos , Neoplasias/tratamento farmacológico
15.
Addict Behav ; 125: 107130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674905

RESUMO

PURPOSE OF THE RESEARCH: Early evidence from studies of home smoking policies suggests that in-home cannabis smoking is more often allowed than in-home tobacco smoking, but there are not yet data on whether cannabis is more often smoked in the home compared to tobacco, or whether in-home cannabis and tobacco smoking differs by usage status. Using cross-sectional data from over 100,000 sentinel drug users from 17 countries, we compared cannabis and tobacco smoking in the homes of Global Drug Survey 2019 respondents who currently used cannabis only, tobacco only, both tobacco and cannabis, or neither. PRINCIPAL RESULTS: Complete data on cannabis and tobacco use and in-home smoking were available for 107,272 adults (average age = 30 ± 12, 34% women, countries with the three highest response rates; Germany = 32%, USA = 10%, New Zealand = 9%). In total, 53.6% and 50.6% of respondents reported past-year cannabis and tobacco smoking in their home respectively. Stratifying respondents into current cannabis-only users, tobacco-only users, dual users, and non-users, past-year in-home cannabis smoking was more prevalent (78.8%) among cannabis-only users than was in-home tobacco smoking (67.9%) among tobacco-only users. Among dual users, past-year in-home cannabis smoking (82.8%; 95%CI = 80%-86%) was higher than in-home tobacco smoking (75.9%; 95%CI = 69%-81%; p < 0.001). In-home cannabis and tobacco smoking was similar among non-users (20.2% and 20.5%, respectively). MAJOR CONCLUSIONS: Past-year in-home cannabis smoking was more prevalent than tobacco smoking in the homes of participants who used cannabis and/or tobacco, supporting our speculation that in-home cannabis smoking might be more socially acceptable than in-home tobacco smoking.


Assuntos
Fumar Maconha , Preparações Farmacêuticas , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Fumar Maconha/epidemiologia , Inquéritos e Questionários , Fumar Tabaco , Adulto Jovem
16.
Front Neurol ; 13: 1086195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712435

RESUMO

An increasing number of studies have demonstrated the underlying mechanisms by which acupuncture therapy mediates both local and systemic immunomodulation. However, the connection between alterations in the local microenvironment and the resulting change in systemic immunity remains unclear. In this review, we focus on cell-specific changes in local immune responses following acupuncture stimulation and their link to systemic immune modulation. We have gathered the most recent evidence for chemo- and mechano-reactive changes in endothelial cells, neutrophils, macrophages, and mast cells in response to acupuncture. Local signaling is then related to the activation of systemic neuro-immunity including the cholinergic, adrenal, and splenic nervous systems and pain-related neuromodulation. This review aims to serve as a reference for further research in this field.

17.
mBio ; 12(6): e0260021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781734

RESUMO

Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzae RPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiae Rpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where "kd" stands for "knockdown") has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR's inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence. IMPORTANCE RPD3 is an evolutionarily conserved class I histone deacetylase (HDAC) that plays a pivotal role in diverse cellular processes. In filamentous fungal pathogens, abrogation of the gene encoding RPD3 results in either lethality or severe growth impairment, making subsequent genetic analyses challenging. Magnaporthe oryzae is a causal agent of rice blast disease, which is responsible for significant annual yield losses in rice production. Here, we characterized the RPD3 gene of M. oryzae (MoRPD3) in unprecedented detail using a gene-silencing approach. We provide evidence that MoRPD3 is a bona fide HDAC regulating fungal reproduction and pathogenic development by potentially being involved in the TOR-mediated signaling pathway. To the best of our knowledge, this work is the most comprehensive genetic dissection of RPD3 in filamentous fungal pathogens. Our work extends and deepens our understanding of how an epigenetic factor is implicated in the development and virulence of fungal pathogens of plants.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Acetilação , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Virulência
18.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638540

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is associated with various symptoms, such as depression, pain, and fatigue. To date, the pathological mechanisms and therapeutics remain uncertain. The purpose of this study was to investigate the effect of myelophil (MYP), composed of Astragali Radix and Salviaemiltiorrhizae Radix, on depression, pain, and fatigue behaviors and its underlying mechanisms. Reserpine (2 mg/kg for 10 days, intraperitoneally) induced depression, pain, and fatigue behaviors in mice. MYP treatment (100 mg/kg for 10 days, intragastrically) significantly improved depression behaviors, mechanical and thermal hypersensitivity, and fatigue behavior. MYP treatment regulated the expression of c-Fos, 5-HT1A/B receptors, and transforming growth factor ß (TGF-ß) in the brain, especially in the motor cortex, hippocampus, and nucleus of the solitary tract. MYP treatment decreased ionized calcium binding adapter molecule 1 (Iba1) expression in the hippocampus and increased tyrosine hydroxylase (TH) expression and the levels of dopamine and serotonin in the striatum. MYP treatment altered inflammatory and anti-oxidative-related mRNA expression in the spleen and liver. In conclusion, MYP was effective in recovering major symptoms of ME/CFS and was associated with the regulation of dopaminergic and serotonergic pathways and TGF-ß expression in the brain, as well as anti-inflammatory and anti-oxidant mechanisms in internal organs.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Síndrome de Fadiga Crônica/tratamento farmacológico , Hipocampo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/biossíntese , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/análise , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/biossíntese , Proteínas Proto-Oncogênicas c-fos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Reserpina/efeitos adversos , Serotonina/análise , Fator de Crescimento Transformador beta1/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese
19.
Mol Plant Pathol ; 22(11): 1427-1435, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390122

RESUMO

Fusarium graminearum is an important plant-pathogenic fungus that causes Fusarium head blight on wheat and barley, and ear rot on maize worldwide. This fungus has been widely used as a model organism to study various biological processes of plant-pathogenic fungi because of its amenability to genetic manipulation and well-established outcross system. Gene deletion and overexpression/constitutive expression of target genes are tools widely used to investigate the molecular mechanism underlying fungal development, virulence, and secondary metabolite production. However, for fine-tuning gene expression and studying essential genes, a conditional gene expression system is necessary that enables repression or induction of gene expression by modifying external conditions. Until now, only a few conditional expression systems have been developed in plant-pathogenic fungi. This study proposes a new and versatile conditional gene expression system in F. graminearum using the promoter of a copper-responsive gene, designated F. graminearum copper-responsive 1 (FCR1). Transcript levels of FCR1 were found to be greatly affected by copper availability conditions. Moreover, the promoter (PFCR1 ), 1 kb upstream of the FCR1 open reading frame, was sufficient to confer copper-dependent gene expression. Replacement of a green fluorescent protein gene and FgENA5 promoter with a PFCR1 promoter clearly showed that PFCR1 could be used for fine-tuning gene expression in this fungus. We also demonstrated the applicability of this conditional gene expression system to an essential gene study by replacing the promoter of FgIRE1, an essential gene of F. graminearum. This enabled the generation of FgIRE1 suppression mutants, which allowed functional characterization of the gene. This study reported the first conditional gene expression system in F. graminearum using both repression and induction. This system would be a convenient way to precisely control gene expression and will be used to determine the biological functions of various genes, including essential ones.


Assuntos
Fusarium , Cobre/farmacologia , Proteínas Fúngicas/genética , Fusarium/genética , Expressão Gênica , Doenças das Plantas , Triticum/genética
20.
PLoS One ; 16(5): e0251440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014958

RESUMO

BACKGROUND: Peer review is widely used in academic fields to assess a manuscript's significance and to improve its quality for publication. This scoping review will assess existing peer review guidelines and/or checklists intended for reviewers of biomedical journals and provide an overview on the review guidelines. METHODS: PubMed, Embase, and Allied and Complementary Medicine (AMED) databases were searched for review guidelines from the date of inception until February 19, 2021. There was no date restriction nor article type restriction. In addition to the database search, websites of journal publishers and non-publishers were additionally hand-searched. RESULTS: Of 14,633 database publication records and 24 website records, 65 publications and 14 websites met inclusion criteria for the review (78 records in total). From the included records, a total of 1,811 checklist items were identified. The items related to Methods, Results, and Discussion were found to be the highly discussed in reviewer guidelines. CONCLUSION: This review identified existing literature on peer review guidelines and provided an overview of the current state of peer review guides. Review guidelines were varying by journals and publishers. This calls for more research to determine the need to use uniform review standards for transparent and standardized peer review. PROTOCOL REGISTRATION: The protocol for this study has been registered at Research Registry (www.researchregistry.com): reviewregistry881.


Assuntos
Pesquisa Biomédica , Revisão da Pesquisa por Pares , Bases de Dados Bibliográficas , Humanos , Publicações Periódicas como Assunto , PubMed
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA