Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nat Biotechnol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918616

RESUMO

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.

2.
J Rheumatol ; 51(4): 403-407, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302168

RESUMO

OBJECTIVE: Using Canadian Alliance of Pediatric Rheumatology Investigators (CAPRI) juvenile idiopathic arthritis (JIA) registry data, we describe (1) clinical characteristics of patients with JIA transitioning to adult care, (2) prevalence of disease-related damage and complications, and (3) changes in disease activity during the final year prior to transfer. METHODS: Registry participants who turned 17 years between February 2017 and November 2021 were included. Clinical characteristics and patient-reported outcomes (PROs) at the last recorded pediatric rheumatology visit, and changes observed in the year prior to that visit were analyzed. Physicians completed an additional questionnaire characterizing cumulative disease-related damage and adverse events by age 17 years. RESULTS: At their last visit, 88 of 131 participants (67%) had inactive and 42 (32%) had active disease. Overall, 96 (73%) were on medications and 41 (31%) were on biologic disease-modifying antirheumatic drugs. Among 80 participants for whom the additional questionnaire was completed, 26% had clinically detected joint damage, 31% had joint damage on imaging, 14% had uveitis, and 7.5% had experienced at least 1 serious adverse event. During the final year, 44.2% of patients were in remission, 28.4% attained inactive disease, and 27.4% became or remained active. Mean scores of PROs were stable overall during that last year, but a minority reported marked worsening. CONCLUSION: A substantial proportion of youth with JIA transitioning to adult care in Canada had a high disease burden, which was reflected by their degree of disease activity, joint damage, or ongoing medication use. These results will inform pediatric and adult providers of anticipated needs during transition of care.


Assuntos
Antirreumáticos , Artrite Juvenil , Reumatologia , Adulto , Humanos , Adolescente , Criança , Artrite Juvenil/tratamento farmacológico , Canadá , Antirreumáticos/uso terapêutico , Sistema de Registros
3.
Multivariate Behav Res ; 59(3): 543-565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351547

RESUMO

Recent years have seen the emergence of an "idio-thetic" class of methods to bridge the gap between nomothetic and idiographic inference. These methods describe nomothetic trends in idiographic processes by pooling intraindividual information across individuals to inform group-level inference or vice versa. The current work introduces a novel "idio-thetic" model: the subgrouped chain graphical vector autoregression (scGVAR). The scGVAR is unique in its ability to identify subgroups of individuals who share common dynamic network structures in both lag(1) and contemporaneous effects. Results from Monte Carlo simulations indicate that the scGVAR shows promise over similar approaches when clusters of individuals differ in their contemporaneous dynamics and in showing increased sensitivity in detecting nuanced group differences while keeping Type-I error rates low. In contrast, a competing approach-the Alternating Least Squares VAR (ALS VAR) performs well when groups were separated by larger distances. Further considerations are provided regarding applications of the ALS VAR and scGVAR on real data and the strengths and limitations of both methods.


Assuntos
Simulação por Computador , Modelos Estatísticos , Método de Monte Carlo , Humanos , Simulação por Computador/estatística & dados numéricos , Interpretação Estatística de Dados , Análise dos Mínimos Quadrados
5.
Cureus ; 15(8): e43033, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37674949

RESUMO

Sjögren's syndrome is an autoimmune disease characterized by the destruction of exocrine glands. Clinically, this results in the loss of tear and saliva production. Although xerophthalmia and xerostomia, also known as sicca, is a common presentation among adults, paediatric patients more often present with recurrent parotitis and glandular enlargement. Overall, symptoms can vary, making initial diagnosis challenging. Approximately 80% of patients with Sjögren's syndrome experience parotid gland enlargement, however, salivary cysts are rare. Herein, we present a case of paediatric Sjögren's syndrome where a 12-year-old female presented with a two-month history of bilateral parotid masses. The patient denied any history of xerostomia, xerophthalmia, or constitutional symptoms. Imaging revealed bilateral complex cystic intraparotid masses. A right parotid gland biopsy was performed showing parotid gland parenchyma with dense lymphoplasmacytic infiltrate. Ultimately, the presumptive diagnosis of Sjögren's syndrome was made. This case illustrates the importance of a thorough workup to aid in diagnostic certainty. Parotid cysts associated with Sjögren's are rare but should be considered within the differential diagnosis for paediatric patients with parotid swelling/mass.

6.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628771

RESUMO

Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow characterized by bone lesions, hypercalcemia, anemia, and renal failure. Bortezomib (BTZ), a common treatment for MM, is a proteasome inhibitor that induces apoptosis in MM cells. However, high doses of BTZ can be very toxic, signifying a need for a synergistic drug combination to improve treatment efficacy. Resveratrol (RES), a phenolic compound found in grapes, has been shown to inhibit MM cell growth. We sought to identify a synergistic combination of BTZ with a RES derivative and analyze the effects on reducing viability and inducing apoptosis in human MM cells. BTZ as well as RES and its derivatives pinostilbene (PIN) and piceatannol (PIC) decreased MM cell viability in a dose- and time-dependent manner and increased expression of cleaved proapoptotic proteins poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3 in a dose-dependent manner. The combination of 5 nM BTZ and 5 µM PIN was identified to have synergistic cytotoxic effects in MM RPMI 8226 cells. MM RPMI 8226 cells treated with this combination for 24 h showed increased cleaved PARP1 and caspase-3 expression and higher percentages of apoptotic cells versus cells treated with the individual compounds alone. The treatment also showed increased apoptosis induction in MM RPMI 8226 cells co-cultured with human bone marrow stromal HS-5 cells in a Transwell model used to mimic the bone marrow microenvironment. Expression of oxidative stress defense proteins (catalase, thioredoxin, and superoxide dismutase) in RPMI 8226 cells were reduced after 24 h treatment, and cytotoxic effects of the treatment were ameliorated by antioxidant N-acetylcysteine (NAC), suggesting the treatment impacts antioxidant levels in RPMI 8226 cells. Our results suggest that this combination of BTZ and PIN decreases MM cell viability synergistically by inducing apoptosis and oxidative stress in MM cells.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Caspase 3 , Mieloma Múltiplo/tratamento farmacológico , Antioxidantes , Resveratrol/farmacologia , Microambiente Tumoral
7.
Multivariate Behav Res ; : 1-13, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37590440

RESUMO

Rapid developments over the last several decades have brought increased focus and attention to the role of time scales and heterogeneity in the modeling of human processes. To address these emerging questions, subgrouping methods developed in the discrete-time framework-such as the vector autoregression (VAR)-have undergone widespread development to identify shared nomothetic trends from idiographic modeling results. Given the dependence of VAR-based parameters on the measurement intervals of the data, we sought to clarify the strengths and limitations of these methods in recovering subgroup dynamics under different measurement intervals. Building on the work of Molenaar and collaborators for subgrouping individual time-series by means of the subgrouped chain graphical VAR (scgVAR) and the subgrouping option in the group iterative multiple model estimation (S-GIMME), we present results from a Monte Carlo study aimed at addressing the implications of identifying subgroups using these discrete-time methods when applied to continuous-time data. Results indicate that discrete-time subgrouping methods perform well at recovering true subgroups when the measurement intervals are large enough to capture the full range of a system's dynamics, either via lagged or contemporaneous effects. Further implications and limitations are discussed therein.

9.
Cancer Immunol Res ; 11(8): 1068-1084, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37253111

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators. We then showed that overexpression (OE) of these genes enhanced the cytolysis of CD19-specific chimeric antigen receptor (CAR) T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampened this effect. ADA-OE in CAR T cells improved cancer cytolysis under high concentrations of adenosine, the ADA substrate, and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics analysis of these CAR T cells revealed alterations of global gene expression and metabolic signatures in both ADA- and PDK1-engineered CAR T cells. Functional and immunologic analyses demonstrated that ADA-OE increased proliferation and decreased exhaustion in CD19-specific and HER2-specific CAR T cells. ADA-OE improved tumor infiltration and clearance by HER2-specific CAR T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR T cells and reveal potential targets for improving CAR T-cell therapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunogenética , Imunoterapia Adotiva , Metabolômica , Microambiente Tumoral
10.
Genome Biol Evol ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170918

RESUMO

T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.

11.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993337

RESUMO

Natural killer (NK) cells are an innate immune cell type that serves at the first level of defense against pathogens and cancer. NK cells have clinical potential, however, multiple current limitations exist that naturally hinder the successful implementation of NK cell therapy against cancer, including their effector function, persistence, and tumor infiltration. To unbiasedly reveal the functional genetic landscape underlying critical NK cell characteristics against cancer, we perform perturbomics mapping of tumor infiltrating NK cells by joint in vivo AAV-CRISPR screens and single cell sequencing. We establish a strategy with AAV-SleepingBeauty(SB)- CRISPR screening leveraging a custom high-density sgRNA library targeting cell surface genes, and perform four independent in vivo tumor infiltration screens in mouse models of melanoma, breast cancer, pancreatic cancer, and glioblastoma. In parallel, we characterize single-cell transcriptomic landscapes of tumor-infiltrating NK cells, which identifies previously unexplored sub-populations of NK cells with distinct expression profiles, a shift from immature to mature NK (mNK) cells in the tumor microenvironment (TME), and decreased expression of mature marker genes in mNK cells. CALHM2, a calcium homeostasis modulator that emerges from both screen and single cell analyses, shows both in vitro and in vivo efficacy enhancement when perturbed in chimeric antigen receptor (CAR)-NK cells. Differential gene expression analysis reveals that CALHM2 knockout reshapes cytokine production, cell adhesion, and signaling pathways in CAR- NKs. These data directly and systematically map out endogenous factors that naturally limit NK cell function in the TME to offer a broad range of cellular genetic checkpoints as candidates for future engineering to enhance NK cell-based immunotherapies.

12.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993638

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampens such effect. ADA -OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in both ADA- and PDK1- engineered CAR-T cells. Functional and immunological analyses demonstrate that ADA -OE increases proliferation and decreases exhaustion in α-CD19 and α-HER2 CAR-T cells. ADA-OE improves tumor infiltration and clearance by α-HER2 CAR-T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells, and reveal potential targets for improving CAR-T based cell therapy. Synopsis: The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell metabolism. ADA-overexpression (OE) in α-CD19 and α-HER2 CAR-T cells increases proliferation, cytotoxicity, memory, and decreases exhaustion, and ADA-OE α-HER2 CAR-T cells have enhanced clearance of HT29 human colorectal cancer tumors in vivo .

14.
Commun Biol ; 6(1): 76, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670287

RESUMO

T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we perform a large-scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identify and characterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and sequence patterns. Here we show that T cell clonal expansion is associated with the upregulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma signaling pathways. We also demonstrate that machine learning approaches accurately predict COVID-19 infection based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores. These analyses provide a systems immunology view of T cell adaptive immune responses to COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Aprendizado de Máquina
15.
Nat Biotechnol ; 41(9): 1239-1255, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36702900

RESUMO

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.


Assuntos
Proteínas de Bactérias , Edição de Genes , Humanos , Proteínas de Bactérias/genética , Edição de Genes/métodos , Linfócitos T CD4-Positivos/metabolismo , RNA , Sistemas CRISPR-Cas/genética
16.
Rheumatology (Oxford) ; 62(4): 1616-1620, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35977388

RESUMO

OBJECTIVE: To identify differences between baseline Canadian JIA practices and the 2019 ACR guidelines for JIA. METHODS: Canadian paediatric rheumatologists were surveyed for their opinions on reasonable a priori target adherence rates for JIA guideline recommendations. Prospectively collected data for 266 newly diagnosed children from 2017 to 2019 were analysed to calculate observed adherence rates. Kaplan-Meier survival curves were used to estimate the cumulative incidence of starting synthetic or biologic DMARDs (sDMARD or bDMARD, respectively) for different patient groups. RESULTS: A total of 25/61 (41%) eligible physicians answered the survey. Most survey respondents (64%) felt that adherence targets should vary depending on the strength of the recommendation and quality of evidence, from a mean of 84% for strong recommendations with high-quality evidence to 29% for conditional recommendations with very low-quality evidence. Data showed 13/19 (68%) recommendations would have met proposed targets and 10/19 (53%) had ≥80% observed adherence. Exceptions were the use of subcutaneous vs oral MTX (53%) and infrequent treatment escalation from NSAIDs to bDMARDs in patients with sacroiliitis (31%) or enthesitis (0%). By 12 weeks, 95% of patients with polyarthritis received sDMARDs, 38% of patients with systemic JIA received bDMARDs and 22% of patients with sacroiliitis received bDMARDs. CONCLUSION: Canadian paediatric rheumatology practices were in line with many 2019 JIA guideline recommendations before their publication, except for frequent use of oral MTX and infrequent direct escalation from NSAIDs to bDMARDs in sacroiliitis and enthesitis.


Assuntos
Antirreumáticos , Artrite Juvenil , Entesopatia , Reumatologia , Sacroileíte , Criança , Humanos , Artrite Juvenil/diagnóstico , Canadá , Antirreumáticos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Sistema de Registros , Entesopatia/tratamento farmacológico , Metotrexato/uso terapêutico , Resultado do Tratamento
17.
J Hematol Oncol ; 15(1): 172, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456981

RESUMO

Immunotherapy has transformed cancer treatments; however, a large fraction of patients encounter resistance. Such resistance is mediated by complex factors, often involving interactions between multiple genes. Thus, it is crucially important to identify genetic interactions between genes that are significantly mutated in cancer patients and those involved in immune responses, ideally the ones that currently have chemical compounds for direct targeting. To systematically interrogate such genetic interactions that mediate cancer cells' response to T cell killing, we designed an asymmetric dual perturbation library targeting the matched combinations between significantly mutated tumor suppressors and immune resistance genes. We performed a combinatorial double knockout screen on 1159 gene pairs and identified those where joint loss-of-function renders altered cellular response to T cell cytotoxicity. We also performed comparative transcriptomics-based analyses on tumor and normal samples from TCGA and GTEx cohorts, mutational profiling analyses, and survival analyses to further characterize the significance of identified hits in clinical patients. Interactions between significantly mutated tumor suppressors and potentially druggable immune resistance genes may offer insights on potential new concepts of how to target clinically relevant cancer mutations with currently available agents. This study also provides a technology platform and an asymmetric double knockout library for interrogating genetic interactions between cancer mutations and immune resistance pathways under various settings.


Assuntos
Neoplasias , Linfócitos T , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias/genética , Imunoterapia , Mutação
19.
J Invest Dermatol ; 142(9): 2306-2312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985765

RESUMO

Mosaicism results from postzygotic alterations during embryogenesis leading to genetically distinct populations of cells within individuals and has been historically recognized by phenotypes with visible, often patterned manifestations. Before the advent of molecular profiling assays and high-throughput sequencing, it was challenging to study mosaicism in human disease; however, the study of mosaic disorders has recently revealed unexpected and novel pathways for disease pathogenesis. In this paper, we will review the techniques for discovery of disease-causing alleles using Proteus syndrome; phakomatosis pigmentokeratotica; linear porokeratosis; and vacuoles, E1 enzyme, X-linked, autoinflammatory somatic syndrome as models. These tools represent powerful approaches for dissecting the genetic basis for human disorders.


Assuntos
Mosaicismo , Dermatopatias Genéticas , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nevo Pigmentado/genética , Síndrome de Proteu/genética
20.
Cell Rep ; 40(5): 111160, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921835

RESUMO

Although COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging on development of multispecies coronavirus vaccines. Here we develop prototype lipid nanoparticle (LNP)-mRNA vaccine candidates against SARS-CoV-2 Delta, SARS-CoV, and MERS-CoV, and we test how multiplexing LNP-mRNAs can induce effective immune responses in animal models. Triplex and duplex LNP-mRNA vaccinations induce antigen-specific antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV. Single-cell RNA sequencing profiles the global systemic immune repertoires and respective transcriptome signatures of vaccinated animals, revealing a systemic increase in activated B cells and differential gene expression across major adaptive immune cells. Sequential vaccination shows potent antibody responses against all three species, significantly stronger than simultaneous vaccination in mixture. These data demonstrate the feasibility, antibody responses, and single-cell immune profiles of multispecies coronavirus vaccination. The direct comparison between simultaneous and sequential vaccination offers insights into optimization of vaccination schedules to provide broad and potent antibody immunity against three major pathogenic coronavirus species.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Lipossomos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Nanopartículas , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA