RESUMO
To significantly reduce the charging time of commercial lithium-ion batteries (LIBs), it is essential to control the surface properties of graphite anodes because the charging process involves sluggish interfacial kinetics between graphite and the electrolyte. For the effective surface modification of graphite, herein we demonstrate the surface decoration with titanium carbide (TiC) nanocrystals onto graphite particles via a simple wet-coating process. The high electrical conductivity, low Li+ adsorption energy, and small surface diffusion barrier of the TiC nanocrystals facilitate fast Li+ adsorption and migration in the graphite surface by reducing the overpotential upon the charging process. The feasibility of the TiC nanocrystal-decorated graphite (TiC@AG) anode is thoroughly examined with an in-depth understanding of the interfacial reaction mechanism. Furthermore, the full-cell with a commercial cathode (LiNi0.8Co0.1Mn0.1O2) and TiC@AG anode demonstrates an impressive capacity retention (94.5%) after 300 cycles under fast-charging condition (3 C-charging and 1 C-discharging) without any sign of Li plating. The charging time of the TiC@AG full-cell was estimated at 16.2 min (80% of state of charge), which is substantially shorter than that of the artificial graphite full-cell. Our findings offer practical insights into the design principles of advanced graphite anodes, contributing to the realization of fast-charging LIBs.
RESUMO
Enhancing the mobility of lithium-ions (Li+) through surface engineering is one of major challenges facing fast-charging lithium-ion batteries (LIBs). In case of demanding charging conditions, the use of a conventional artificial graphite (AG) anode leads to an increase in operating temperature and the formation of lithium dendrites on the anode surface. In this study, a biphasic zeolitic imidazolate framework (ZIF)-AG anode, designed strategically and coated with a mesoporous material, is verified to improve the pathways of Li+ and electrons under a high charging current density. In particular, the graphite surface is treated with a coating of a ZIF-8-derived carbon nanoparticles, which addresses sufficient surface porosity, enabling this material to serve as an electrolyte reservoir and facilitate Li+ intercalation. Moreover, the augmentation in specific surface area proves advantageous in reducing the overpotential for interfacial charge transfer reactions. In practical terms, employing a full-cell with the biphasic ZIF-AG anode results in a shorter charging time and improved cycling performance, demonstrating no evidence of Li plating during 300 cycles under 3.0 C-charging and 1.0 C-discharging. The research endeavors to contribute to the progress of anode materials by enhancing their charging capability, aligning with the increasing requirements of the electric vehicle applications.
RESUMO
The automation of organic compound synthesis is pivotal for expediting the development of such compounds. In addition, enhancing development efficiency can be achieved by incorporating autonomous functions alongside automation. To achieve this, we developed an autonomous synthesis robot that harnesses the power of artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes. Given a target molecule, our AI initially plans synthetic pathways and defines reaction conditions. It then iteratively refines these plans using feedback from the experimental robot, gradually optimizing the recipe. The system performance was validated by successfully determining synthetic recipes for three organic compounds, yielding that conversion rates that outperform existing references. Notably, this autonomous system is designed around batch reactors, making it accessible and valuable to chemists in standard laboratory settings, thereby streamlining research endeavors.
RESUMO
For realizing all-solid-state batteries (ASSBs), it is highly desirable to develop a robust solid electrolyte (SE) that has exceptional ionic conductivity and electrochemical stability at room temperature. While argyrodite-type Li6PS5Cl (LPSCl) SE has garnered attention for its relatively high ionic conductivity (â¼3.19 × 10-3 S cm-1), it tends to emit hydrogen sulfide (H2S) in the presence of moisture, which can hinder the performance of ASSBs. To address this issue, researchers are exploring approaches that promote structural stability and moisture resistance through elemental doping or substitution. Herein, we suggest using zeolite imidazolate framework-8 as a moisture absorbent in LPSCl without modifying the structure of the SE or the electrode configuration. By incorporating highly ordered porous materials, we demonstrate that ASSBs configured with LPSCl SE display stable cyclability due to effective and long-lasting moisture absorption. This approach not only improves the overall quality of ASSBs but also lays the foundation for developing a moisture-resistant sulfide electrolyte.
RESUMO
The adoption of Li2CuO2 has drawn interest as a Li-excess cathode additive for compensating irreversible Li+ loss in anodes during cycling, which would move forward high-energy-density lithium-ion batteries (LIBs). Li2CuO2 provides a high irreversible capacity (>200 mAh g-1) in the first cycle and an operating voltage comparable with commercial cathode materials, but its practical use is still restricted by the structural instability and spontaneous oxygen (O2) evolution, resulting in poor overall cycling performance. It is thus crucial to reinforce the structure of Li2CuO2 to make it more reliable as a cathode additive for charge compensation. Pursuing the structural stability of Li2CuO2, herein, we demonstrate cosubstitution by heteroatoms, such as nickel (Ni) and manganese (Mn), for improving the structural stability and electrochemical performance of Li2CuO2. Such an approach effectively enhances the reversibility of Li2CuO2 by suppressing continuous structural degradation and O2 gas evolution during cycling. Our findings provide new conceptual pathways for developing advanced cathode additives for high-energy LIBs.
RESUMO
The uncontrollable dendritic growth of metallic lithium during repeated cycling in carbonate electrolytes is a crucial obstacle hindering the practical use of Li-metal batteries (LMBs). Among numerous approaches proposed to mitigate the intrinsic constraints of Li metal, the design of a functional separator is an attractive approach to effectively suppress the growth of Li dendrites because direct contact with both the Li metal surface and the electrolyte is maintained. Here, a newly designed all-in-one separator containing bifunctional CaCO3 nanoparticles (CPP separator) is proposed to achieve the flattening of Li deposits on the Li electrode. Strong interactions between the highly polar CaCO3 nanoparticles and the polar solvent reduces the ionic radius of the Li+ -solvent complex, thus increasing the Li+ transference number and leading to a reduced concentration overpotential in the electrolyte-filled separator. Furthermore, the integration of CaCO3 nanoparticles into the separator induces the spontaneous formation of mechanically-strong and lithiophilic CaLi2 at the Li/separator interface, which effectively decreases the nucleation overpotential toward Li plating. As a result, the Li deposits exhibit dendrite-free planar morphologies, thus enabling excellent cycling performance in LMBs configured with a high-Ni cathode in a carbonate electrolyte under practical operating conditions.
RESUMO
The lithium (Li) metal anode is highly desirable for high-energy density batteries. During prolonged Li plating-stripping, however, dendritic Li formation and growth are probabilistically high, allowing physical contact between the two electrodes, which results in a cell short-circuit. Engineering the separator is a promising and facile way to suppress dendritic growth. When a conventional coating approach is applied, it usually sacrifices the bare separator structure and severely increases the thickness, ultimately decreasing the volumetric density. Herein, we introduce dielectric silicon oxide with the feature of bi-morphological form, i.e., backbone-covered and backbone-anchored, onto the conventional polyethylene separator without any volumetric change. These functionally vary the Li+ transference number and the ionic conductivity so as to modulate Li-ion solvation and self-scavenging of Li dendrites. The proposed separator paves the way to maximizing the full cell performance of Li/NCM622 toward practical application.
RESUMO
The strategic design of the cathode is a critical feature for high-performance and long-lasting reversibility of an energy storage system. In particular, the round-trip efficiency and cycling performance of nonaqueous lithium-oxygen batteries are governed by minimizing the discharge products, such as Li2O and Li2O2. Recently, a metal-organic framework has been directly pyrolyzed into a carbon frame with controllable pore volume and size. Furthermore, selective metallic catalysts can also be obtained by adjusting metal ions for outstanding electrochemical reactions. In this study, various bimetallic zeolitic imidazolate framework (ZIF)-derived carbons were designed by varying the ratio of Zn to Co ions. Moreover, carbon nanotubes (CNTs) are added to improve the electrical conductivity further, ultimately leading to better electrochemical stability in the cathode. As a result, the optimized bimetallic ZIF-carbon/CNT composite exhibits a high discharge capacity of 16,000 mAh·g-1, with a stable cycling performance of up to 137 cycles. This feature is also beneficial for lowering the overpotential of the cathode during cycling, even at the high current density of 2,000 mA·g-1.
RESUMO
Graphite is the most popular anode material for lithium-ion batteries (LIBs) owing to its high reversibility and stable cycling performance. With the rapid growth of the global electric vehicle (EV) market, it has become necessary to improve the quick-charge performance of graphite to reduce the charging time of LIBs. Therefore, from a structural viewpoint, it is crucial to control interfacial reactions and stabilize the surface of graphite to improve the sluggish interfacial kinetics. Herein, we propose a facile approach for integrating functional metal oxides on the surface of natural graphite (NG) via a surface-coating technique in combination with a facile-crystallization process. The functionality of the metal oxides, i.e., MoO2 and Fe3O4, on the surface of NG was thoroughly investigated based on various structural and electrochemical analyses. The results demonstrate that the metal oxides play critical roles in stabilizing the surface of NG and facilitating faster Li+ migration at the interface between NG and the electrolyte during cycling. In particular, the full cell configured with the c-Fe3O4-NG anode shows remarkably improved charging behavior (3 C charging-1 C discharging) without any significant loss of reversible capacity during 300 cycles. This study has conclusively established that tailoring the surface of NG with functional metal oxides would be a utilitarian way to improve the charging capability of NG. We are confident that the study results would provide utilitarian insights into the development of advanced LIBs for successful implementation in EV applications in the future.
RESUMO
Radiation-induced skin injury (RISI) is a main side effect of radiotherapy for cancer patients, with vascular damage being a common pathogenesis of acute and chronic RISI. Despite the severity of RISI, there are few treatments for it that are in clinical use. 2-Methoxyestradiol (2-ME) has been reported to regulate the radiation-induced vascular endothelial-to-mesenchymal transition. Thus, we investigated 2-ME as a potent anti-cancer and hypoxia-inducible factor 1 alpha (HIF-1α) inhibitor drug that prevents RISI by targeting HIF-1α. 2-ME treatment prior to and post irradiation inhibited RISI on the skin of C57/BL6 mice. 2-ME also reduced radiation-induced inflammation, skin thickness, and vascular fibrosis. In particular, post-treatment with 2-ME after irradiation repaired the damaged vessels on the irradiated dermal skin, inhibiting endothelial HIF-1α expression. In addition to the increase in vascular density, post-treatment with 2-ME showed fibrotic changes in residual vessels with SMA+CD31+ on the irradiated skin. Furthermore, 2-ME significantly inhibited fibrotic changes and accumulated DNA damage in irradiated human dermal microvascular endothelial cells. Therefore, we suggest that 2-ME may be a potent therapeutic agent for RISI.
Assuntos
Células Endoteliais , Lesões por Radiação , 2-Metoxiestradiol/farmacologia , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mercaptoetanol , Camundongos , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/etiologia , PeleRESUMO
Lithium metal batteries have recently gained tremendous attention owing to their high energy capacity compared to other rechargeable batteries. Nevertheless, lithium (Li) dendritic growth causes low Coulombic efficiency, thermal runaway, and safety issues, all of which hinder the practical application of Li metal as an anodic material. In this review, the failure mechanisms of Li metal anode are described according to its infinite volume changes, unstable solid electrolyte interphase, and Li dendritic growth. The fundamental models that describe the Li deposition and dendritic growth, such as the thermodynamic, electrodeposition kinetics, and internal stress models are summarized. From these considerations, porous carbon-based frameworks have emerged as a promising strategy to resolve these issues. Thus, the main principles of utilizing these materials as a Li metal host are discussed. Finally, we also focus on the recent progress on utilizing one-, two-, and three-dimensional carbon-based frameworks and their composites to highlight the future outlook of these materials.
RESUMO
Recently, Ni-rich layered cathode materials have become the most common material used for lithium-ion batteries. From a structural viewpoint, it is crucial to stabilize the surface structures of such materials, as they are prone to undesirable side reactions and particle cracking in which intergranular microcracks form at the particle surfaces and then propagate inside. As a simplified engineering technique for obtaining Ni-rich cathode materials with high reversibility and long-term cycling stability, we propose a facile surface coating of piezoelectric LiTaO3 onto a Ni-rich cathode material to enhance the charge transfer reaction and surface structural integrity. Based on theoretical and experimental investigation, we demonstrate that this surface protection approach is effective at enhancing the reversibility and mechanical strength of Ni-rich cathode materials, leading to a stable cycle performance at up to 150 cycles, even at 60 °C. Furthermore, the piezoelectric characteristics of the surface LiTaO3 can enhance the rate capability of Ni-rich cathode materials at current densities of up to 2.0C. The results of this study provide a practical insight on the development of Ni-rich cathode materials for practical use in electric vehicle applications.
RESUMO
Computer-aided retrosynthetic planning for organic molecules, which is based on a large synthetic database, is a significant part of the recent development of autonomous robotic chemists. As in other AI fields, however, the class imbalance problem in the dataset affects the prediction performance of retrosynthetic paths. Here, we demonstrate that applying undersampling models to the imbalanced reaction dataset can improve the prediction of retrosynthetic templates for target molecules. We report improvements in the top-1 and top-10 prediction accuracies by 13.8% (13.1, 5.4%) and 8.8% (6.9, 2.4%) for undersampling based on the similarity (random, dissimilarity) clustering of molecular structures of products, respectively. These results demonstrate the importance of deep understanding of the statistical distribution, internal structure, and sampling for the training dataset. For practical applications, the target-oriented undersampling model is proposed and confirmed by the improved prediction performance of 9.3 and 4.2% for the top-1 and top-10 accuracies, respectively.
RESUMO
Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.
RESUMO
High linear energy transfer (LET) radiation, such as neutron radiation, is considered more effective for the treatment of cancer than low LET radiation, such as X-rays. We previously reported that X-ray irradiation induced endothelial-to-mesenchymal transition (EndMT) and profibrotic changes, which contributed to the radioresistance of tumors. However, this effect was attenuated in tumors of endothelial-specific Trp53-knockout mice. Herein, we report that compared to X-ray irradiation, neutron radiation therapy reduced collagen deposition and suppressed EndMT in tumors. In addition to the fewer fibrotic changes, more cluster of differentiation (CD8)-positive cytotoxic T cells were observed in neutron-irradiated regrowing tumors than in X-ray-irradiated tumors. Furthermore, lower programmed death-ligand 1 (PD-L1) expression was noted in the former. Endothelial-specific Trp53 deletion suppressed fibrotic changes within the tumor environment following both X-ray and neutron radiation therapy. In particular, the upregulation in PD-L1 expression after X-ray radiation therapy was significantly dampened. Our findings suggest that compared to low LET radiation therapy, high LET radiation therapy can efficiently suppress profibrotic changes and enhance the anti-tumor immune response, resulting in delayed tumor regrowth.
RESUMO
A spherical hollow carbon framework decorated with functional heteroatoms is designed and synthesized using ultrasonic spray pyrolysis as a potential anode material for lithium metal batteries (LMBs). The pore structure of the hollow carbon framework can be tailored by melamine, which is a functional additive for integrating abundant nanopores and the uniform decoration of heteroatoms in the structure. The large surface area and pore volume of the hollow carbon framework offer enhanced reversibility and capability for metallic Li storage. In addition, the dendritic growth of Li and volume changes induced by repeated Li plating and stripping can be effectively suppressed during cycling. More importantly, atomic-scale decorations of heteroatoms can effectively lower the overpotential for the nucleation and growth of metallic Li inside the hollow carbon framework. It is mainly responsible for improving the cycle performance and rate capability, even at a high current density. Finally, the hollow carbon framework anode shows stable behavior toward Li plating and stripping without significant capacity fading in the LMBs than conventional Li metal anodes.
RESUMO
The development of lithium (Li)-metal anode is high priority research to initiate next-generation Li batteries. Applying Li-metal in practical applications as anode still has many hurdles to clear away, such as low Coulombic efficiency and capacity degradation by the continuous formation of dead Li. We demonstrate that cobalt (Co) nanoparticle incorporation in a porous carbon host anode can play a critical role in the formation of a thick lithium fluoride dominated solid-electrolyte interphase in ether-based electrolyte. As a result, the host anode containing Co nanoparticles shows excellent electrochemical performance with high Li-metal reversible capacity and even stable long-term cyclability with no dead Li formation.
RESUMO
Many researchers working on the development of Dye-sensitized solar cells (DSCs) continue to focus on the synthesis of photoanode materials with high surface area, along with high light scattering ability to enhance light harvesting efficiency (LHE). On the other hand, dye packing density, which can also affect the LHE significantly, is often overlooked. Solvothermally synthesized anatase TiO2 nanoparticles (SANP) were obtained by a new and simple approach using a mixed solvent, ethanol and acetic acid. SANP were applied as a photoanodes material in DSCs using a metal-free organic dye (D149) or organometallic dye (N719) dyes. The dye loading (packing density) was examined in term of the isoelectric point (IEP) and the contribution of this, in addition to light scattering effects were shown to control the devices photovoltaic efficiency of the devices; specifically when compared with ones employing commercially available TiO2 nanoparticles (either transparent or a bilayer structure with a transparent layer and a scattering one). SANP photoanodes sensitized with D149 dye were found to be optimised at 10 µm, yielding photovoltaic conversion efficiencies of 6.9%, superior to for transparent or transparent + scattering films from the commercial source (5.6% and 5.9%, respectively). Further to this, an efficiency of 7.7% PCE was achieved using a SANP photoanode sensitized with N719 dye, with 7.2% seen for the transparent photoanode and 7.9% with a scattering layer. The high efficiencies of devices based on of SANP photoanode are attributed to the high dye loading capability in addition to good light scattering. A further point of interest is that even with the increased reactivity of the surface towards dye adsorption, we did not observe any significant increase in recombination with the redox mediator, presumably due to this increased dye loading providing better shielding.
RESUMO
Si-based anode materials are considered as potential materials for high-energy lithium-ion batteries (LIBs) with the advantages of high specific capacities and low operating voltages. However, significant initial capacity loss and large volume variations during cycles are the primary restrictions for the practical application of Si-based anodes. Herein, we propose an affordable and scalable synthesis of double-layered SiOx/Mg2SiO4/SiOx composites through the magnesiothermic reduction of micro-sized SiO with Mg metal powder at 750 °C for 2 h. The distinctive morphology and microstructure of the double-layered SiOx/Mg2SiO4/SiOx composite are beneficial as they remarkably improve the reversibility in the first cycle and completely suppress the volume variations during cycling. In our material design, the outermost layer with a highly porous SiOx structure provides abundant active sites by securing a pathway for efficient access to electrons and electrolytes. The inner layer of Mg2SiO4 can constrain the large volume expansion to increase the initial Coulombic efficiency (ICE). Owing to these promising structural features, the composite prepared with a 2:1 molar ratio of SiO to Mg exhibited initial charge and discharge capacities of 1826 and 1381 mA h g-1, respectively, with an ICE of 75.6%. Moreover, it showed a stable cycle performance, maintaining high capacity retention of up to >86.0% even after 300 cycles. The proposed approach provides practical insight into the mass production of advanced anode materials for high-energy LIBs.
RESUMO
Retrosynthesis is an essential task in organic chemistry for identifying the synthesis pathways of newly discovered materials, and with the recent advances in deep learning, there have been growing attempts to solve the retrosynthesis problem through transformer models, which are the state-of-the-art in neural machine translation, by converting the problem into a machine translation problem. However, the pure transformer provides unsatisfactory results that lack grammatical validity, chemical plausibility, and diversity in reactant candidates. In this study, we develop tied two-way transformers with latent modeling to solve those problems using cycle consistency checks, parameter sharing, and multinomial latent variables. Experimental results obtained using public and in-house datasets demonstrate that the proposed model improves the retrosynthesis accuracy, grammatical error, and diversity, and qualitative evaluation results verify its ability to suggest valid and plausible results.