Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853868

RESUMO

Lipid transfer through membrane contact has been implicated to support vesicular transport, but a mechanistic understanding of this process remains to be achieved. Here, examining Coat Protein I (COPI) transport, we find that phosphatidylcholine (PC) with short acyl chains (sPC), which is needed to support COPI vesicle fission, is delivered through membrane contact from the endoplasmic reticulum (ER) to the Golgi complex at sites of COPI vesicle formation. Phosphatidylinositol transfer protein beta (PITPß) plays a central role in this delivery by not only catalyzing PC transfer, but also forming membrane contact. By combining cell-based studies with reconstitution approaches, we achieve spatial and temporal detail in explaining how sPC delivery occurs. Our findings advance the mechanistic understanding of how membrane contact is needed for vesicular transport in a model pathway and shed new insights into how PITPß acts.

2.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702503

RESUMO

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição , Humanos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Endocitose , Proliferação de Células , Integrinas/metabolismo , Integrinas/genética , Transdução de Sinais , Mecanotransdução Celular
3.
Artigo em Inglês | MEDLINE | ID: mdl-38424360

RESUMO

BACKGROUND: Children may be exposed to harmful chemicals from their products. Accurate exposure factors are critical for exposure assessment of children's products. Product usage pattern parameters are relatively limited compared with the chemical concentration, children's physiological and behavioral parameters. OBJECTIVE: The aim of this study was to determine nationally representative Korean exposure factors for the usage patterns of children's products by sex, age, and season. METHODS: Using proportional quota sampling, a survey of 10,000 households with children aged 0-12 years was conducted twice, once in summer and winter. The children's ages were divided into four groups: infant (0-2 years old), toddler (3-6), lower-grade elementary student (7-9), and higher-grade elementary student (10-12). Data on exposure factors such as use rate, use frequency, and use duration of 57 children's products were collected. RESULTS: The 57 products were classified into five categories: baby products (13), toys (12), daily products (10), sporting goods (8), and stationery (14). The use rates of products in the daily products and stationery category were >90% in both seasons. Two of the 57 products showed significant sex differences in all three exposure factors (p < 0.001). Twenty-five of the 44 non-baby products showed significant age differences for all three exposure factors. Twenty-three of the 57 products varied significantly with season for all three exposure factors. IMPACT: This study generated a nationally representative exposure factor database for the usage patterns of children's products in Korea. The exposure factors for 57 children's products were investigated through twice survey with quota sampling with each 10,000 children nationwide. Sex, age, and seasonal differences for children's products were identified. These accurate exposure factors by sex, age, and season can be used as input parameters for refined exposure assessment.

4.
Dev Cell ; 58(19): 1950-1966.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816329

RESUMO

Newly synthesized proteins in the endoplasmic reticulum (ER) are sorted by coat protein complex II (COPII) at the ER exit site en route to the Golgi. Under cellular stresses, COPII proteins become targets of regulation to control the transport. Here, we show that the COPII outer coat proteins Sec31 and Sec13 are selectively sequestered into the biomolecular condensate of SCOTIN/SHISA-5, which interferes with COPII vesicle formation and inhibits ER-to-Golgi transport. SCOTIN is an ER transmembrane protein with a cytosolic intrinsically disordered region (IDR), which is required and essential for the formation of condensates. Upon IFN-γ stimulation, which is a cellular condition that induces SCOTIN expression and condensation, ER-to-Golgi transport was inhibited in a SCOTIN-dependent manner. Furthermore, cancer-associated mutations of SCOTIN perturb its ability to form condensates and control transport. Together, we propose that SCOTIN impedes the ER-to-Golgi transport through its ability to form biomolecular condensates at the ER membrane.


Assuntos
Retículo Endoplasmático , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Transporte Proteico/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
5.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686691

RESUMO

Subungual melanoma (SUM) is a rare type of malignant melanoma that arises beneath the nails. SUM is categorized as a type of acral melanoma (AM), which occurs on the hands and feet. SUM is an aggressive type of cutaneous melanoma that is most common among Asian patients. Recent studies reveal that SUM and AM might have different molecular characteristics. Treatment of melanoma relies on analysis of both clinical and molecular data. Therefore, the clinical and molecular characteristics of SUM need to be established, especially during metastasis. To define the mutation profiles of SUM and compare them with those of AM, we performed next-generation sequencing of primary and metastatic tumors of SUM and AM patients. Subungual location was a better independent prognostic factor than acral location for better overall survival (p = 0.001). Patients with SUM most commonly had the triple wild-type (75%) driven by GNAQ (58%) and KIT (25%) mutations, whereas patients with AM had BRAF (28.6%) and RAF (14.3%) molecular types of mutations. Single-nucleotide variations (SNVs) were more common in SUM than in AM, whereas copy number alterations (CNAs) were more common metastatic lesions of AM. Metastatic tumors in patients with SUM and AM showed increases in CNAs (43% and 80%, respectively), but not in SNVs. The number of CNAs increased during metastasis. When compared with AM, SUM has distinct clinical and molecular characteristics.

6.
EMBO Rep ; 24(8): e56538, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37377038

RESUMO

The ER regulates the spatiotemporal organization of endolysosomal systems by membrane contact. In addition to tethering via heterotypic interactions on both organelles, we present a novel ER-endosome tethering mechanism mediated by homotypic interactions. The single-pass transmembrane protein SCOTIN is detected in the membrane of the ER and endosomes. In SCOTIN-knockout (KO) cells, the ER-late endosome contacts are reduced, and the perinuclear positioning of endosomes is disturbed. The cytosolic proline-rich domain (PRD) of SCOTIN forms homotypic assemblies in vitro and is necessary for ER-endosome membrane tethering in cells. A region of 28 amino acids spanning 150-177 within the SCOTIN PRD is essential to elicit membrane tethering and endosomal dynamics, as verified by reconstitution in SCOTIN-KO cells. The assembly of SCOTIN (PRD) is sufficient to mediate membrane tethering, as purified SCOTIN (PRD), but not SCOTIN (PRDΔ150-177), brings two different liposomes closer in vitro. Using organelle-specific targeting of a chimeric PRD domain shows that only the presence on both organellar membranes enables the ER-endosome membrane contact, indicating that the assembly of SCOTIN on heterologous membranes mediates organelle tethering.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Membranas Intracelulares/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Endossomos/metabolismo
7.
Front Oncol ; 13: 1183442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168374

RESUMO

Background: Cholangiocarcinoma (CCA) is a silent tumor with a high mortality rate due to the difficulty of early diagnosis and prediction of recurrence even after timely surgery. Serologic cancer biomarkers have been used in clinical practice, but their low specificity and sensitivity have been problematic. In this study, we aimed to identify CCA-specific glycan epitopes that can be used for diagnosis and to elucidate the mechanisms by which glycosylation is altered with tumor progression. Methods: The serum of patients with various cancers was fractioned into membrane-bound and soluble components using serial ultracentrifugation. Lectin blotting was conducted to evaluate glycosylation. Proteins having altered glycosylation were identified using proteomic analysis and further confirmed using immunoblotting analysis. We performed HPLC, gene analysis, real-time cargo tracking, and immunohistochemistry to determine the origin of CCA glycosylation and its underlying mechanisms. Extracellular vesicles (EV) were isolated from the sera of 62 patients with CCA at different clinical stages and inflammatory conditions and used for glycan analysis to assess their clinical significance. Results: The results reveal that glycosylation patterns between soluble and membrane-bound fractions differ significantly even when obtained from the same donor. Notably, glycans with α1-3/4 fucose and ß1-6GlcNAc branched structures increase specifically in membrane-bound fractions of CCA. Mechanically, it is primarily due to ß-haptoglobin (ß-Hp) originating from CCA expressing fucosyltransferase-3/4 (FUT 3/4) and N-acetylglucosaminyltransferase-V (MGAT5). Newly synthesized ß-Hp is loaded into EVs in early endosomes via a KFERQ-like motif and then secreted from CCA cells to induce tumor progression. In contrast, ß-Hp expressed by hepatocytes is secreted in a soluble form that does not affect CCA progression. Moreover, evaluation of EV glycosylation in CCA patients shows that fucosylation level of EV-Hp gradually increases with tumor progression and decreases markedly when the tumors are eliminated by surgery. Conclusion: This study suggests that terminal fucosylation of Hp in cancer-derived exosomes can be a novel glycan marker for diagnosis and prognosis of CCA. These findings highlight the potential of glycan analysis in different fractions of serum for biomarker discover for other diseases. Further research is needed to understand the role of fucosylated EVs on CCA progression.

9.
Proc Natl Acad Sci U S A ; 120(8): e2214507120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795749

RESUMO

Regulation of microtubule dynamics is required to properly control various steps of neurodevelopment. In this study, we identified granule cell antiserum-positive 14 (Gcap14) as a microtubule plus-end-tracking protein and as a regulator of microtubule dynamics during neurodevelopment. Gcap14 knockout mice exhibited impaired cortical lamination. Gcap14 deficiency resulted in defective neuronal migration. Moreover, nuclear distribution element nudE-like 1 (Ndel1), an interacting partner of Gcap14, effectively corrected the downregulation of microtubule dynamics and the defects in neuronal migration caused by Gcap14 deficiency. Finally, we found that the Gcap14-Ndel1 complex participates in the functional link between microtubule and actin filament, thereby regulating their crosstalks in the growth cones of cortical neurons. Taken together, we propose that the Gcap14-Ndel1 complex is fundamental for cytoskeletal remodeling during neurodevelopmental processes such as neuronal processes elongation and neuronal migration.


Assuntos
Actinas , Proteínas Associadas aos Microtúbulos , Neurônios , Animais , Camundongos , Actinas/metabolismo , Movimento Celular/fisiologia , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo
10.
Methods Mol Biol ; 2557: 519-528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512234

RESUMO

The Coat Protein I (COPI) complex forms vesicles from Golgi membrane for retrograde transport among the Golgi stacks, and also from the Golgi to the endoplasmic reticulum (ER). We have been elucidating the mechanistic details of COPI vesicle formation through a reconstitution system that involves the incubation of Golgi membrane with purified components. This approach has enabled us recently to gain new insight into how certain lipids are critical for the fission stage of COPI vesicle formation. Lipid geometry has been proposed to act in the formation of transport carriers by promoting membrane curvature. However, evidence for this role has come from studies using simplified membranes, while confirmation in the more physiologic setting of native membranes has been challenging, as such membranes contain a complex composition of lipids and proteins. We have recently refined the COPI reconstitution system to overcome this experimental obstacle. This has led us to identify an unanticipated type of lipid geometry needed for COPI vesicle fission. This chapter describes the approach that we have developed to enable this discovery. The methodologies include: (i) preparation Golgi membrane from cells that are deficient in a particular lipid enzyme activity and (ii) functional rescue of this deficiency by introducing the product of the lipid enzyme, with experiments being performed at the in vitro level to gain mechanistic clarity and at the in vivo level to confirm physiologic relevance.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Complexo de Golgi , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Lipídeos
11.
Mol Psychiatry ; 28(2): 856-870, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357673

RESUMO

Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.


Assuntos
Neocórtex , Esquizofrenia , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/genética , Estudo de Associação Genômica Ampla , Cinesinas/genética , Cinesinas/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
12.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38187566

RESUMO

The ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. Here, we have used cryo-electron microscopy (EM) to solve the structure of an ARF6 protein lattice assembled on tubulated membrane to 3.9 Å resolution. ARF6 forms tetramers that polymerize into helical arrays to form this lattice. We identify, and confirm functionally, protein contacts critical for this lattice formation. The solved structure also suggests how the ARF amphipathic helix is positioned in the lattice for membrane insertion, and how a GTPase-activating protein (GAP) docks onto the lattice to catalyze ARF-GTP hydrolysis in completing membrane fission. As ARF1 and ARF6 are structurally conserved, we have also modeled ARF1 onto the ARF6 lattice, which has allowed us to pursue the reconstitution of Coat Protein I (COPI) vesicles to confirm more definitively that the ARF lattice acts in vesicle fission. Our findings are notable for having achieved the first detailed glimpse of how a small GTPase bends membrane and having provided a molecular understanding of how an ARF protein acts in vesicle fission.

13.
Cell Chem Biol ; 29(10): 1532-1540.e5, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36167077

RESUMO

Dimerization of beta 2-adrenergic receptor (ß2-AR) has been observed across various physiologies. However, the function of dimeric ß2-AR is still elusive. Here, we revealed that dimerization of ß2-AR is responsible for the constitutive activity of ß2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient ß2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric ß2-AR, but not monomeric ß2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of ß2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric ß2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of ß2-AR. Our model not only shows the function of dimeric ß2-AR but also provides a molecular insight into the mechanism of the inverse agonism of ß2-AR.


Assuntos
Transdução de Sinais , Dimerização , Membrana Celular/metabolismo
14.
Biomaterials ; 282: 121419, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202935

RESUMO

Despite the great potential of disease modeling using human pluripotent stem cells (hPSCs) derived from patients with mutations, lack of an appropriate isogenic control hinders a precise phenotypic comparison due to the bias arising from the dissimilar genetic backgrounds between the control and diseased hPSCs. Herein, we took advantage of currently available base editors (BEs) to epitomize the isogenic disease model from hPSCs. Using this method, we established multiple isogenic GNE myopathy disease models that harbor point mutations on the GNE gene, including four different mutations found in GNE myopathy patients. Four different mutations in the epimerase or kinase domains of GNE revealed mutation-specific hyposialylation and hyposialylation dependent gene signature, which was closely correlated to pathological clinical phenotypes. GNE protein structure modeling based on the mutations, addressed these mutation-specific hyposialylation patterns. Furthermore, treatment with a drug candidate currently under clinical trials showed a mutation-specific drug response in GNE myopathy disease models. These data suggest that derivation of multiple isogenic disease models from hPSCs by using genome editing can enable translationally relevant studies on the pathophysiology of GNE myopathy and drug responses.


Assuntos
Miopatias Distais , Células-Tronco Pluripotentes , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Humanos , Mutação/genética , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo
15.
Autophagy ; 18(5): 1208-1210, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188063

RESUMO

The Golgi apparatus regulates the process of modification and subcellular localization of macromolecules, including proteins and lipids. Aberrant protein sorting caused by defects in the Golgi leads to various diseases in mammals. However, the role of the Golgi apparatus in organismal longevity remained largely unknown. By employing a quantitative proteomic approach, we demonstrated that MON-2, an evolutionarily conserved Arf-GEF protein implicated in Golgi-to-endosome trafficking, promotes longevity via upregulating macroautophagy/autophagy in C. elegans. Our data using cultured mammalian cells indicate that MON2 translocates from the Golgi to the endosome under starvation conditions, subsequently increasing autophagic flux by binding LGG-1/GABARAPL2. Thus, Golgi-to-endosome trafficking appears to be an evolutionarily conserved process for the upregulation of autophagy, which contributes to organismal longevity.


Assuntos
Autofagia , Longevidade , Animais , Autofagia/fisiologia , Caenorhabditis elegans , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos , Proteômica
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173048

RESUMO

G protein-coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteostase/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipogonadismo/metabolismo , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de Sinais
17.
Front Mol Biosci ; 9: 1030725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619173

RESUMO

Activation of receptor tyrosine kinase signaling inactivates capicua (CIC), a transcriptional repressor that functions as a tumor suppressor, via degradation and/or cytoplasmic translocation. Although CIC is known to be inactivated by phosphorylation, the mechanisms underlying the cytoplasmic translocation of CIC remain poorly understood. Therefore, we aimed to evaluate the roles of extracellular signal-regulated kinase (ERK), p90RSK, and c-SRC in the epidermal growth factor receptor (EGFR) activation-induced cytoplasmic translocation of CIC and further investigated the molecular basis for this process. We found that nuclear ERK induced the cytoplasmic translocation of CIC-S. We identified 12 serine and threonine (S/T) residues within CIC, including S173 and S301 residues that are phosphorylated by p90RSK, which contribute to the cytoplasmic translocation of CIC-S when phosphorylated. The amino-terminal (CIC-S-N) and carboxyl-terminal (CIC-S-C) regions of CIC-S were found to interact with each other to promote their nuclear localization. EGF treatment disrupted the interaction between CIC-S-N and CIC-S-C and induced their cytoplasmic translocation. Alanine substitution for the 12 S/T residues blocked the cytoplasmic translocation of CIC-S and consequently enhanced the tumor suppressor activity of CIC-S. Our study demonstrates that ERK-mediated disruption of intramolecular interaction of CIC is critical for the cytoplasmic translocation of CIC, and suggests that the nuclear retention of CIC may represent a strategy for cancer therapy.

18.
Sci Adv ; 7(49): eabj8156, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860542

RESUMO

The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.

19.
BMB Rep ; 54(5): 246-252, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33612152

RESUMO

The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance. [BMB Reports 2021; 54(5): 246-252].


Assuntos
Complexo de Golgi/metabolismo , Humanos , Proteínas/metabolismo
20.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529166

RESUMO

The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ativação Linfocitária , Mutação de Sentido Incorreto , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/imunologia , Substituição de Aminoácidos , Animais , Apoptose/genética , Proteína Coatomer/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Humanos , Camundongos , Camundongos Mutantes , Receptores de Peptídeos/genética , Receptores de Peptídeos/imunologia , Imunodeficiência Combinada Severa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA