Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Chem ; 67(1): 620-642, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117688

RESUMO

ß-Lactamase enzymes hydrolyze and thereby provide bacterial resistance to the important ß-lactam class of antibiotics. The OXA-48 and NDM-1 ß-lactamases cause resistance to the last-resort ß-lactams, carbapenems, leading to a serious public health threat. Here, we utilized DNA-encoded chemical library (DECL) technology to discover novel ß-lactamase inhibitors. We exploited the ß-lactamase enzyme-substrate binding interactions and created a DECL targeting the carboxylate-binding pocket present in all ß-lactamases. A library of 106 compounds, each containing a carboxylic acid or a tetrazole as an enzyme recognition element, was designed, constructed, and used to identify OXA-48 and NDM-1 inhibitors with micromolar to nanomolar potency. Further optimization led to NDM-1 inhibitors with increased potencies and biological activities. This work demonstrates that the carboxylate-binding pocket-targeting DECL, designed based on substrate binding information, aids in inhibitor identification and led to the discovery of novel non-ß-lactam pharmacophores for the development of ß-lactamase inhibitors for enzymes of different structural and mechanistic classes.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Penicilinas , DNA , Testes de Sensibilidade Microbiana
2.
Exp Neurol ; 355: 114141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691372

RESUMO

Anti-seizure drug (ASD) targets are widely expressed in both excitatory and inhibitory neurons. It remains unknown if the action of an ASD upon inhibitory neurons could counteract its beneficial effects on excitatory neurons (or vice versa), thereby reducing the efficacy of the ASD. Here, we examine whether the efficacy of the ASD retigabine (RTG) is altered after removal of the Kv7 potassium channel subunit KCNQ2, one of its drug targets, from parvalbumin-expressing interneurons (PV-INs). Parvalbumin-Cre (PV-Cre) mice were crossed with Kcnq2-floxed (Kcnq2fl/fl) mice to conditionally delete Kcnq2 from PV-INs. In these conditional knockout mice (cKO, PV-Kcnq2fl/fl), RTG (10 mg/kg, i.p.) significantly delayed the onset of either picrotoxin (PTX, 10 mg/kg, i.p)- or kainic acid (KA, 30 mg/kg, i.p.)-induced convulsive seizures compared to vehicle, while RTG was not effective in wild-type littermates (WT). Immunostaining for KCNQ2 and KCNQ3 revealed that both subunits were enriched at axon initial segments (AISs) of hippocampal CA1 PV-INs, and their specific expression was selectively abolished in cKO mice. Accordingly, the M-currents recorded from CA1 PV-INs and their sensitivity to RTG were significantly reduced in cKO mice. While the ability of RTG to suppress CA1 excitatory neurons in hippocampal slices was unchanged in cKO mice, its suppressive effect on the spike activity of CA1 PV-INs was significantly reduced compared with WT mice. In addition, the RTG-induced suppression on intrinsic membrane excitability of PV-INs in WT mice was significantly reduced in cKO mice. These findings suggest that preventing RTG from suppressing PV-INs improves its anticonvulsant effect.


Assuntos
Parvalbuminas , Fenilenodiaminas , Animais , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Interneurônios/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
3.
ACS Infect Dis ; 6(5): 1214-1227, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182432

RESUMO

Bacterial resistance to ß-lactam antibiotics is largely mediated by ß-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. ß-Lactamases that hydrolyze the last resort carbapenem class of ß-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent ß-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency (Ki = 0.53 ± 0.08 µM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with ß-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into E. coli. Despite the low in vivo activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify ß-lactamase binders and to study ß-lactamase inhibition, leading to clinically useful inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Inibidores de beta-Lactamases , DNA , Escherichia coli/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
4.
Elife ; 72018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382937

RESUMO

KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have emerged as indispensable regulators of brain network activity. Despite their critical role in brain homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons', but not SST+ interneurons', firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2 channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility, suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks, providing a new function for these channels.


Assuntos
Deleção de Genes , Homeostase , Interneurônios/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Transmissão Sináptica , Animais , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Transmissão Sináptica/efeitos dos fármacos
5.
J Physiol ; 595(23): 7249-7260, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28901011

RESUMO

KEY POINTS: In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice. There are distinct gene-linked patterns of aberrant phase-amplitude coupling in the interictal EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal phase-amplitude coupling remains. Seizure-free stg/+ mice have normal power and phase-amplitude coupling, but beta/gamma power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network phenotype that is separable from, and therefore not a result of, seizures. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from epileptiform activity, and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment. ABSTRACT: In childhood absence epilepsy, cortical seizures are brief and intermittent; however there are extended periods without behavioural or electrographic ictal events. This genetic disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional biomarkers that might provide insight into interictal cortical function have been described. Previous work in monogenic mouse models of absence epilepsy have shown that the interictal EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type calcium channel mutation. To further evaluate the interictal EEG, we quantified phase-amplitude coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice, therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neurotransmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers in the absence of epileptiform activity and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment.


Assuntos
Anticonvulsivantes/farmacologia , Ondas Encefálicas , Epilepsia Tipo Ausência/fisiopatologia , Etossuximida/farmacologia , Genótipo , Animais , Anticonvulsivantes/uso terapêutico , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Etossuximida/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA