Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 9(1): 18264, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797883

RESUMO

Head and neck lymphedema (HNL) is a disfiguring disease affecting over 90% of patients treated for head and neck cancer. Animal models of lymphedema are used to test pharmacologic and microsurgical therapies; however, no animal model for HNL is described in the literature to date. In this study we describe the first reproducible rat model for HNL. Animals were subjected to two surgical protocols: (1) lymphadenectomy plus irradiation; and (2) sham surgery and no irradiation. Head and neck expansion was measured on post-operative days 15, 30 and 60. Magnetic resonance imaging (MRI) was acquired at the same time points. Lymphatic drainage was measured at day 60 via indocyanine green (ICG) lymphography, after which animals were sacrificed for histological analysis. Postsurgical lymphedema was observed 100% of the time. Compared to sham-operated animals, lymphadenectomy animals experienced significantly more head and neck swelling at all timepoints (P < 0.01). Lymphadenectomy animals had significantly slower lymphatic drainage for 6 days post-ICG injection (P < 0.05). Histological analysis of lymphadenectomy animals revealed 83% greater subcutis thickness (P = 0.008), 22% greater collagen deposition (P = 0.001), 110% greater TGFß1+ cell density (P = 0.04), 1.7-fold increase in TGFß1 mRNA expression (P = 0.03), and 114% greater T-cell infiltration (P = 0.005) compared to sham-operated animals. In conclusion, animals subjected to complete lymph node dissection and irradiation developed changes consistent with human clinical postsurgical HNL. This was evidenced by significant increase in all head and neck measurements, slower lymphatic drainage, subcutaneous tissue expansion, increased fibrosis, and increased inflammation compared to sham-operated animals.


Assuntos
Modelos Animais de Doenças , Excisão de Linfonodo , Linfedema/fisiopatologia , Radioterapia/efeitos adversos , Animais , Cabeça/patologia , Neoplasias de Cabeça e Pescoço/complicações , Sistema Linfático/patologia , Pescoço/patologia , Ratos , Ratos Transgênicos
2.
Stem Cells Transl Med ; 8(9): 925-934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020798

RESUMO

Ionizing radiation, commonly used in the treatment of solid tumors, has unintended but deleterious effects on overlying skin and is associated with chronic nonhealing wounds. Skin-derived mesenchymal stromal cells (SMSCs) are a pluripotent population of cells that are critically involved in skin homeostasis and wound healing. The aim of this study was to isolate and functionally characterize SMSCs from human skin that was previously irradiated as part of neoadjuvant or adjuvant cancer therapy. To this end, SMSCs were isolated from paired irradiated and nonirradiated human skin samples. Irradiated SMSCs expressed characteristic SMSC markers at lower levels, had disorganized cytoskeletal structure, and had disordered morphology. Functionally, these cells had diminished proliferative capacity and substantial defects in colony-forming capacity and differentiation in vitro. These changes were associated with significant differential expression of genes known to be involved in skin physiology and wound healing. Conditioned media obtained from irradiated SMSCs affected fibroblast but not endothelial cell proliferation and migration. These results suggest that in situ damage to SMSCs during neoadjuvant or adjuvant radiation may play a critical role in the pathogenesis of slow or nonhealing radiation wounds. Stem Cells Translational Medicine 2019;8:925&934.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Comunicação Parácrina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipogenia , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Forminas/genética , Forminas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/patologia , Neoplasias/radioterapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteogênese , Comunicação Parácrina/efeitos da radiação , Radiação Ionizante , Pele/citologia , Pele/patologia , Pele/efeitos da radiação , Transcriptoma/efeitos da radiação
3.
Front Pharmacol ; 9: 386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731715

RESUMO

Lipoteichoic acid (LTA) induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin's anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2), and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS) and cyclooxygenase-2 (COX-2) expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK) including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO)-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2) expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.

4.
IEEE Trans Med Imaging ; 30(3): 867-78, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245006

RESUMO

This paper presents a domain-specific automated image analysis framework for the detection of pre-cancerous and cancerous lesions of the uterine cervix. Our proposed framework departs from previous methods in that we include domain-specific diagnostic features in a probabilistic manner using conditional random fields. Likewise, we provide a novel window-based performance assessment scheme for 2D image analysis which addresses the intrinsic problem of image misalignment. Image regions corresponding to different tissue types are indentified for the extraction of domain-specific anatomical features. The unique optical properties of each tissue type and the diagnostic relationships between neighboring regions are incorporated in the proposed conditional random field model. The validity of our method is examined using clinical data from 48 patients, and its diagnostic potential is demonstrated by a performance comparison with expert colposcopy annotations, using histopathology as the ground truth. The proposed automated diagnostic approach can support or potentially replace conventional colposcopy, allow tissue specimen sampling to be performed in a more objective manner, and lower the number of cervical cancer cases in developing countries by providing a cost effective screening solution in low-resource settings.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias do Colo do Útero/patologia , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA