Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neuroimage Rep ; 2(4): None, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36507069

RESUMO

The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) ε4 allele - the strongest common genetic risk factor for AD - showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-ß and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age range = 19-33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE ε4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE ε4-related differences in PHCB HMOA. Our findings indicate that young adult APOE ε4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-ß accumulation and/or tau spread.

2.
Neuroimage ; 260: 119423, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809886

RESUMO

It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30-40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
3.
Hum Brain Mapp ; 43(11): 3439-3460, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396899

RESUMO

White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.


Assuntos
Doença de Huntington , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/patologia , Imageamento por Ressonância Magnética/métodos , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
4.
Nat Comput Sci ; 1: 598-606, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35865756

RESUMO

Most diffusion magnetic resonance imaging studies of disease rely on statistical comparisons between large groups of patients and healthy participants to infer altered tissue states in the brain; however, clinical heterogeneity can greatly challenge their discriminative power. There is currently an unmet need to move away from the current approach of group-wise comparisons to methods with the sensitivity to detect altered tissue states at the individual level. This would ultimately enable the early detection and interpretation of microstructural abnormalities in individual patients, an important step towards personalized medicine in translational imaging. To this end, Detect was developed to advance diffusion magnetic resonance imaging tractometry towards single-patient analysis. By operating on the manifold of white-matter pathways and learning normative microstructural features, our framework captures idiosyncrasies in patterns along white-matter pathways. Our approach paves the way from traditional group-based comparisons to true personalized radiology, taking microstructural imaging from the bench to the bedside.

5.
Magn Reson Med ; 85(2): 1104-1113, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009875

RESUMO

PURPOSE: The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal B-matrix tracking (STB) is proposed and its performance compared to established pipelines. METHODS: Diffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB. RESULTS: Up to 30% errors were observed in DT-MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which B0 inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities. CONCLUSIONS: Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion-induced spatio-temporal B-matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física)
6.
Neuroimage ; 225: 117406, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33045335

RESUMO

We provide a rich multi-contrast microstructural MRI dataset acquired on an ultra-strong gradient 3T Connectom MRI scanner comprising 5 repeated sets of MRI microstructural contrasts in 6 healthy human participants. The availability of data sets that support comprehensive simultaneous assessment of test-retest reliability of multiple microstructural contrasts (i.e., those derived from advanced diffusion, multi-component relaxometry and quantitative magnetisation transfer MRI) in the same population is extremely limited. This unique dataset is offered to the imaging community as a test-bed resource for conducting specialised analyses that may assist and inform their current and future research. The Microstructural Image Compilation with Repeated Acquisitions (MICRA) dataset includes raw data and computed microstructure maps derived from multi-shell and multi-direction encoded diffusion, multi-component relaxometry and quantitative magnetisation transfer acquisition protocols. Our data demonstrate high reproducibility of several microstructural MRI measures across scan sessions as shown by intra-class correlation coefficients and coefficients of variation. To illustrate a potential use of the MICRA dataset, we computed sample sizes required to provide sufficient statistical power a priori across different white matter pathways and microstructure measures for different statistical comparisons. We also demonstrate whole brain white matter voxel-wise repeatability in several microstructural maps. The MICRA dataset will be of benefit to researchers wishing to conduct similar reliability tests, power estimations or to evaluate the robustness of their own analysis pipelines.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
7.
J Huntingtons Dis ; 9(3): 303-320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894249

RESUMO

BACKGROUND: Impaired myelination may contribute to Huntington's disease (HD) pathogenesis. OBJECTIVE: This study assessed differences in white matter (WM) microstructure between HD patients and controls, and tested whether drumming training stimulates WM remodelling in HD. Furthermore, it examined whether training-induced microstructural changes are related to improvements in motor and cognitive function. METHODS: Participants undertook two months of drumming exercises. Working memory and executive function were assessed before and post-training. Changes in WM microstructure were investigated with diffusion tensor magnetic resonance imaging (DT-MRI)-based metrics, the restricted diffusion signal fraction (Fr) from the composite hindered and restricted model of diffusion (CHARMED) and the macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT) imaging. WM pathways linking putamen and supplementary motor areas (SMA-Putamen), and three segments of the corpus callosum (CCI, CCII, CCIII) were studied using deterministic tractography. Baseline MPF differences between patients and controls were assessed with tract-based spatial statistics. RESULTS: MPF was reduced in the mid-section of the CC in HD subjects at baseline, while a significantly greater change in MPF was detected in HD patients relative to controls in the CCII, CCIII, and the right SMA-putamen post-training. Further, although patients improved their drumming and executive function performance, such improvements did not correlate with microstructural changes. Increased MPF suggests training-induced myelin changes in HD. CONCLUSION: Though only preliminary and based on a small sample size, these results suggest that tailored behavioural stimulation may lead to neural benefits in early HD, that could be exploited for delaying disease progression.


Assuntos
Função Executiva/fisiologia , Doença de Huntington/reabilitação , Imageamento por Ressonância Magnética , Bainha de Mielina/patologia , Reabilitação Neurológica , Desempenho Psicomotor/fisiologia , Aprendizagem Seriada/fisiologia , Substância Branca/patologia , Adulto , Idoso , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Tensor de Difusão , Feminino , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Reabilitação Neurológica/métodos , Avaliação de Resultados em Cuidados de Saúde , Putamen/diagnóstico por imagem , Putamen/patologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
8.
Hum Brain Mapp ; 41(10): 2583-2595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216121

RESUMO

Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n = 78) aged 8-18 (mean = 12.4, SD = 2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from b = 0 to 6,000 s/mm2 . Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b = 6,000 s/mm2 , median R2 = .34; b = 4,000 s/mm2 , median R2 = .29; b = 2,400 s/mm2 , median R2 = .21; b = 1,200 s/mm2 , median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas , Neuroimagem/métodos , Adolescente , Criança , Simulação por Computador , Feminino , Humanos , Masculino
9.
Neuroimage ; 209: 116471, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877372

RESUMO

Accurate anatomical localisation of specific white matter tracts and the quantification of their tract-specific microstructural damage in conditions such as multiple sclerosis (MS) can contribute to a better understanding of symptomatology, disease evolution and intervention effects. Diffusion MRI-based tractography is being used increasingly to segment white matter tracts as regions-of-interest for subsequent quantitative analysis. Since MS lesions can interrupt the tractography algorithm's tract reconstruction, clinical studies frequently resort to atlas-based approaches, which are convenient but ignorant to individual variability in tract size and shape. Here, we revisit the problem of individual tractography in MS, comparing tractography algorithms using: (i) The diffusion tensor framework; (ii) constrained spherical deconvolution (CSD); and (iii) damped Richardson-Lucy (dRL) deconvolution. Firstly, using simulated and in vivo data from 29 MS patients and 19 healthy controls, we show that the three tracking algorithms respond differentially to MS pathology. While the tensor-based approach is unable to deal with crossing fibres, CSD produces spurious streamlines, in particular in tissue with high fibre loss and low diffusion anisotropy. With dRL, streamlines are increasingly interrupted in pathological tissue. Secondly, we demonstrate that despite the effects of lesions on the fibre orientation reconstruction algorithms, fibre tracking algorithms are still able to segment tracts that pass through areas with a high prevalence of lesions. Combining dRL-based tractography with an automated tract segmentation tool on data from 131 MS patients, the cortico-spinal tracts and arcuate fasciculi could be reconstructed in more than 90% of individuals. Comparing tract-specific microstructural parameters (fractional anisotropy, radial diffusivity and magnetisation transfer ratio) in individually segmented tracts to those from a tract probability map, we show that there is no systematic disease-related bias in the individually reconstructed tracts, suggesting that lesions and otherwise damaged parts are not systematically omitted during tractography. Thirdly, we demonstrate modest anatomical correspondence between the individual and tract probability-based approach, with a spatial overlap between 35 and 55%. Correlations between tract-averaged microstructural parameters in individually segmented tracts and the probability-map approach ranged between r=.53 (p<.001) for radial diffusivity in the right cortico-spinal tract and r=.97 (p<.001) for magnetisation transfer ratio in the arcuate fasciculi. Our results show that MS white matter lesions impact fibre orientation reconstructions but this does not appear to hinder the ability to anatomically reconstruct white matter tracts in MS. Individual tract segmentation in MS is feasible on a large scale and could prove a powerful tool for investigating diagnostic and prognostic markers.


Assuntos
Imagem de Tensor de Difusão/normas , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Simulação por Computador , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Processamento de Imagem Assistida por Computador/normas , Masculino , Pessoa de Meia-Idade
10.
Neuroimage ; 203: 116186, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31542512

RESUMO

The conduction velocity (CV) of action potentials along axons is a key neurophysiological property central to neural communication. The ability to estimate CV in humans in vivo from non-invasive MRI methods would therefore represent a significant advance in neuroscience. However, there are two major challenges that this paper aims to address: (1) Much of the complexity of the neurophysiology of action potentials cannot be captured with currently available MRI techniques. Therefore, we seek to establish the variability in CV that can be captured when predicting CV purely from parameters that have been reported to be estimatable from MRI: inner axon diameter (AD) and g-ratio. (2) errors inherent in existing MRI-based biophysical models of tissue will propagate through to estimates of CV, the extent to which is currently unknown. Issue (1) is investigated by performing a sensitivity analysis on a comprehensive model of axon electrophysiology and determining the relative sensitivity to various morphological and electrical parameters. The investigations suggest that 85% of the variance in CV is accounted for by variation in AD and g-ratio. The observed dependency of CV on AD and g-ratio is well characterised by the previously reported model by Rushton. Issue (2) is investigated through simulation of diffusion and relaxometry MRI data for a range of axon morphologies, applying models of restricted diffusion and relaxation processes to derive estimates of axon volume fraction (AVF), AD and g-ratio and estimating CV from the derived parameters. The results show that errors in the AVF have the biggest detrimental impact on estimates of CV, particularly for sparse fibre populations (AVF<0.3). For our equipment set-up and acquisition protocol, CV estimates are most accurate (below 5% error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD is high (above 4µm). CV estimates are robust to errors in g-ratio estimation but are highly sensitive to errors in AD estimation, particularly where ADs are small. We additionally show CV estimates in human corpus callosum in a small number of subjects. In conclusion, we demonstrate accurate CV estimates are possible in regions of the brain where AD is sufficiently large. Problems with estimating ADs for smaller axons presents a problem for estimating CV across the whole CNS and should be the focus of further study.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Modelos Neurológicos , Condução Nervosa , Adulto , Fenômenos Biofísicos , Corpo Caloso/anatomia & histologia , Corpo Caloso/fisiologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Neurosci ; 39(34): 6696-6713, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31235646

RESUMO

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Assuntos
Amnésia/fisiopatologia , Diencéfalo/fisiopatologia , Hipocampo/fisiopatologia , Corpos Mamilares/fisiopatologia , Vias Neurais/fisiopatologia , Tálamo/fisiopatologia , Amnésia/diagnóstico por imagem , Animais , Diencéfalo/diagnóstico por imagem , Eletroencefalografia , Ritmo Gama , Hipocampo/diagnóstico por imagem , Locomoção , Imageamento por Ressonância Magnética , Masculino , Corpos Mamilares/diagnóstico por imagem , Aprendizagem em Labirinto , Vias Neurais/diagnóstico por imagem , Plasticidade Neuronal , Ratos , Sono REM , Memória Espacial , Tálamo/diagnóstico por imagem , Ritmo Teta
12.
Neuroimage ; 200: 89-100, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228638

RESUMO

Various diffusion MRI (dMRI) measures have been proposed for characterising tissue microstructure over the last 15 years. Despite the growing number of experiments using different dMRI measures in assessments of white matter, there has been limited work on: 1) examining their covariance along specific pathways; and on 2) combining these different measures to study tissue microstructure. Indeed, it quickly becomes intractable for existing analysis pipelines to process multiple measurements at each voxel and at each vertex forming a streamline, highlighting the need for new ways to visualise or analyse such high-dimensional data. In a sample of 36 typically developing children aged 8-18 years, we profiled various commonly used dMRI measures across 22 brain pathways. Using a data-reduction approach, we identified two biologically-interpretable components that capture 80% of the variance in these dMRI measures. The first derived component captures properties related to hindrance and restriction in tissue microstructure, while the second component reflects characteristics related to tissue complexity and orientational dispersion. We then demonstrate that the components generated by this approach preserve the biological relevance of the original measurements by showing age-related effects across developmentally sensitive pathways. In summary, our findings demonstrate that dMRI analyses can benefit from dimensionality reduction techniques, to help disentangling the neurobiological underpinnings of white matter organisation.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética/normas , Imagem de Tensor de Difusão/métodos , Imagem de Tensor de Difusão/normas , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem
13.
Transl Psychiatry ; 9(1): 102, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804328

RESUMO

Genomic copy number variants (CNVs) are amongst the most highly penetrant genetic risk factors for neuropsychiatric disorders. The scarcity of carriers of individual CNVs and their phenotypical heterogeneity limits investigations of the associated neural mechanisms and endophenotypes. We applied a novel design based on CNV penetrance for schizophrenia (Sz) and developmental delay (DD) that allows us to identify structural sequelae that are most relevant to neuropsychiatric disorders. Our focus on brain structural abnormalities was based on the hypothesis that convergent mechanisms contributing to neurodevelopmental disorders would likely manifest in the macro- and microstructure of white matter and cortical and subcortical grey matter. Twenty one adult participants carrying neuropsychiatric risk CNVs (including those located at 22q11.2, 15q11.2, 1q21.1, 16p11.2 and 17q12) and 15 age- and gender-matched controls underwent T1-weighted structural, diffusion and relaxometry MRI. The macro- and microstructural properties of the cingulum bundles were associated with penetrance for both developmental delay and schizophrenia, in particular curvature along the anterior-posterior axis (Sz: pcorr = 0.026; DD: pcorr = 0.035) and intracellular volume fraction (Sz: pcorr = 0.019; DD: pcorr = 0.064). Further principal component analysis showed alterations in the interrelationships between the volumes of several midline white-matter structures (Sz: pcorr = 0.055; DD: pcorr = 0.027). In particular, the ratio of volumes in the splenium and body of the corpus callosum was significantly associated with both penetrance scores (Sz: p = 0.037; DD; p = 0.006). Our results are consistent with the notion that a significant alteration in developmental trajectories of midline white-matter structures constitutes a common neurodevelopmental aberration contributing to risk for schizophrenia and intellectual disability.


Assuntos
Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Esquizofrenia/genética , Substância Branca/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Deleção Cromossômica , Transtornos Cromossômicos/complicações , Feminino , Humanos , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
14.
Br J Psychiatry ; 213(3): 548-554, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30113288

RESUMO

BACKGROUND: Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.AimsThis study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. METHOD: Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. RESULTS: The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. CONCLUSIONS: Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.Declaration of interestNone.


Assuntos
Transtorno Bipolar/fisiopatologia , Encéfalo/patologia , Imagem de Tensor de Difusão , Adulto , Anisotropia , Transtorno Bipolar/classificação , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Núcleo Accumbens/patologia , Córtex Pré-Frontal/patologia , Escalas de Graduação Psiquiátrica , Irmãos , Substância Branca/patologia
15.
Front Neurol ; 9: 1092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619051

RESUMO

Convection-enhanced delivery (CED) is an innovative method of drug delivery to the human brain, that bypasses the blood-brain barrier by injecting the drug directly into the brain. CED aims to target pathological tissue for central nervous system conditions such as Parkinson's and Huntington's disease, epilepsy, brain tumors, and ischemic stroke. Computational fluid dynamics models have been constructed to predict the drug distribution in CED, allowing clinicians advance planning of the procedure. These models require patient-specific information about the microstructure of the brain tissue, which can be collected non-invasively using magnetic resonance imaging (MRI) pre-infusion. Existing models employ the diffusion tensor, which represents Gaussian diffusion in brain tissue, to provide predictions for the drug concentration. However, those predictions are not always in agreement with experimental observations. In this work we present a novel computational fluid dynamics model for CED that does not use the diffusion tensor, but rather the diffusion probability that is experimentally measured through diffusion MRI, at an individual-participant level. Our model takes into account effects of the brain microstructure on the motion of drug molecules not taken into account in previous approaches, namely the restriction and hindrance that those molecules experience when moving in the brain tissue, and can improve the drug concentration predictions. The duration of the associated MRI protocol is 19 min, and therefore feasible for clinical populations. We first prove theoretically that the two models predict different drug distributions. Then, using in vivo high-resolution diffusion MRI data from a healthy participant, we derive and compare predictions using both models, in order to identify the impact of including the effects of restriction and hindrance. Including those effects results in different drug distributions, and the observed differences exhibit statistically significant correlations with measures of diffusion non-Gaussianity in brain tissue. The differences are more pronounced for infusion in white-matter areas of the brain. Using experimental results from the literature along with our simulation results, we show that the inclusion of the effects of diffusion non-Gaussianity in models of CED is necessary, if reliable predictions that can be used in the clinic are to be generated by CED models.

16.
Brain Behav ; 7(1): e00604, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28127522

RESUMO

BACKGROUND AND OBJECTIVE: Evidence from rat and nonhuman primate studies indicates that axons comprising the fornix have a characteristic topographical organization: projections from the temporal/anterior hippocampus mainly occupy the lateral fornix, whereas the more medial fornix contains fibers from the septal/posterior hippocampus. The aim of this study was to investigate whether the same topographical organization exists in the human brain. METHODS: Using high angular resolution diffusion MRI-based tractography at 3T, subdivisions of the fornix were reconstructed in 40 healthy adults by selecting fiber pathways from either the anterior or the posterior hippocampus. RESULTS: The tract reconstructions revealed that anterior hippocampal fibers predominantly comprise the lateral body of the fornix, whereas posterior fibers make up the medial body of the fornix. Quantitative analyses support this medial:lateral distinction in humans, which matches the topographical organization of the fornix in other primates. CONCLUSION: This novel tractography protocol enables the separation of fornix fibers from anterior and posterior hippocampal regions in the human brain and, hence, provides a means by which to compare functions associated with different sets of connections along the longitudinal axis of the hippocampus.


Assuntos
Imagem de Tensor de Difusão/métodos , Fórnice/anatomia & histologia , Hipocampo/anatomia & histologia , Vias Neurais/anatomia & histologia , Adulto , Feminino , Fórnice/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Adulto Jovem
17.
Front Neurosci ; 11: 694, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311775

RESUMO

Structural brain networks estimated from diffusion MRI (dMRI) via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS) can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI) from the Automated Anatomical Labeling (AAL) template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN). Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a) intra-class correlation coefficient (ICC) of well-known network metrics, both node-wise and per network level; and (b) the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node level. Importantly, both network and node-wise ICCs of network metrics derived from the topologically filtered ISBWN (ISWBNTF), were further improved compared to the non-filtered ISWBN. Finally, in the recognition accuracy tests, we assigned each single ISWBNTF to the correct subject. We also applied our methodology to a second dataset of diffusion-weighted MRI in healthy controls and individuals with psychotic experience. Following a binary classification scheme, the classification performance based on ISWBNTF outperformed the nine different weighting strategies and the ISWBN. Overall, these findings suggest that the proposed methodology results in improved characterization of genuine between-subject differences in connectivity leading to the possibility of network-based structural phenotyping.

18.
Neuroimage ; 130: 35-47, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26778129

RESUMO

The fornix connects the hippocampal formation with structures beyond the temporal lobe. Previous tractography studies have typically reconstructed the fornix as one unified bundle. However, the fornix contains two rostral divisions: the precommissural fornix and the postcommissural fornix. Each division has distinct anatomical connections and, hence, potentially distinct functions. Diffusion weighted MRI and spherical deconvolution based tractography were employed to reconstruct these separate fornix divisions and to examine their microstructural properties in both healthy ageing and Mild Cognitive Impairment (MCI). Reliable reconstructions of precommissural and postcommissural fibres were achieved in both groups, with their fibres retaining largely separate locations within the anterior body of the fornix. Ageing and MCI had comparable effects on the two segments. Ageing was associated with changes in mean, axial and radial diffusivity but not with alterations of fibre population-specific diffusion properties, estimated with the hindrance modulated orientational anisotropy (HMOA). Individual HMOA variation in postcommissural, but not precommissural, fibres correlated positively (and unrelated to age) with visual recall performance. This provides novel evidence for a role of postcommissural fibres, which connect structures of the extended hippocampal network, in episodic memory function. Separating the fornix into its two principal divisions brings new opportunities for distinguishing different hippocampal networks.


Assuntos
Envelhecimento/patologia , Disfunção Cognitiva/diagnóstico por imagem , Fórnice/patologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Memória Episódica , Pessoa de Meia-Idade , Vias Neurais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA