Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 436(4): 168415, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135177

RESUMO

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/virologia , Fagos de Staphylococcus/genética , Fatores de Virulência/genética , Transdução Genética , Empacotamento do DNA , Conformação de Ácido Nucleico
2.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786723

RESUMO

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal in solution and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.

3.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984245

RESUMO

Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Capsídeo/metabolismo , Ilhas Genômicas , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Proteínas Virais/metabolismo , Montagem de Vírus , Proteínas de Bactérias/genética , Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Mapeamento de Interação de Proteínas , Proteínas Virais/genética
4.
J Mol Biol ; 429(10): 1570-1580, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28400210

RESUMO

Staphylococcus aureus is an opportunistic human pathogen able to transfer virulence genes to other cells through the mobilization of S. aureus pathogenicity islands (SaPIs). SaPIs are derepressed and packaged into phage-like transducing particles by helper phages like 80α or φNM1. Phages 80α and φNM1 encode structurally distinct dUTPases, Dut80α (type 1) and DutNM1 (type 2). Both dUTPases can interact with the SaPIbov1 Stl master repressor, leading to derepression and mobilization. That two structurally distinct dUTPases bind the same repressor led us to speculate that dUTPase activity may be important to the derepression process. In type 1 dUTPases, Stl binding is inhibited by dUTP. The purpose of this study was to assess the involvement of dUTP binding and dUTPase activity in derepression by DutNM1. DutNM1 activity mutants were created and tested for dUTPase activity using a novel NMR-based assay. We found that all DutNM1 null activity mutants interacted with the SaPIbov1 Stl C-terminal domain, formed DutNM1-Stl heterodimers, and caused the release of the Pstr promoter. However, promoter release was inhibited in the presence of dUTP or dUMP. We tested two φNM1 mutant phages that had null enzyme activity and found that they could still mobilize SaPIbov1. These results show that only the apo form of DutNM1 is active in Stl derepression and that dUTPase activity is not necessary for the mobilization of SaPIbov1 by DutNM1.


Assuntos
Nucleotídeos de Desoxiuracil/metabolismo , Ilhas Genômicas , Vírus Auxiliares/enzimologia , Pirofosfatases/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Bacteriófagos/enzimologia , Inibidores Enzimáticos/metabolismo , Técnicas de Inativação de Genes , Ligação Proteica , Pirofosfatases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA