Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 119: 111495, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321596

RESUMO

The friction and wear properties of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid materials that are proposed as cartilage tissue engineering materials were investigated against living articular cartilage. A testing rig was designed to allow testing against fresh bovine cartilage. The friction force and wear were compared for five compositions of the hybrid biomaterial articulating against freshly harvested bovine cartilage in diluted bovine calf serum. Under a non-migrating contact, the friction force increased and hence shear force applied to the opposing articular cartilage also increased, resulting in minor damage to the cartilage surface. This worse case testing scenario was used to discriminate between material formulations and revealed the increase in friction and damaged area was lowest for the hybrid containing the most silica. Further friction and wear tests on one hybrid formulation with an elastic modulus closest to that of cartilage were then conducted in a custom incubator system. This demonstrated that over a five day period the friction force, cell viability and glucosaminoglycan (GAG) release into the lubricant were similar between a cartilage-cartilage interface and the hybrid-cartilage interface, supporting the use of these materials for cartilage repair. These results demonstrate how tribology testing can play a part in the development of new materials for chondral tissue engineering. STATEMENT OF SIGNIFICANCE: Designing materials that maintain the low friction and wear of articular cartilage whilst supporting the growth of new tissue is critical if further damage is to be avoided during repair of cartilage defects. This work examines the tribological performance of a SiO2/PTHF/PCL-diCOOH hybrid material and demonstrates a testing protocol that could be applied to any proposed material for cartilage regeneration. Tribological tests demonstrated that changing the hybrid composition decreased friction and reduced damage to the cartilage counterface. This study demonstrates how tribological testing can be integrated into the design process to produce materials with a higher chance of clinical success.


Assuntos
Cartilagem Articular , Animais , Materiais Biocompatíveis/farmacologia , Bovinos , Fricção , Fenômenos Mecânicos , Dióxido de Silício
2.
Acta Biomater ; 65: 102-111, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109026

RESUMO

Partial joint repair is a surgical procedure where an artificial material is used to replace localised chondral damage. These artificial bearing surfaces must articulate against cartilage, but current materials do not replicate both the biphasic and boundary lubrication mechanisms of cartilage. A research challenge therefore exists to provide a material that mimics both boundary and biphasic lubrication mechanisms of cartilage. In this work a polymeric network of a biomimetic boundary lubricant, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was incorporated into an ultra-tough double network (DN) biphasic (water phase + polymer phase) gel, to form a PMPC triple network (PMPC TN) hydrogel with boundary and biphasic lubrication capability. The presence of this third network of MPC was confirmed using ATR-FTIR. The PMPC TN hydrogel had a yield stress of 26 MPa, which is an order of magnitude higher than the peak stresses found in the native human knee. A preliminary pin on plate tribology study was performed where both the DN and PMPC TN hydrogels experienced a reduction in friction with increasing sliding speed which is consistent with biphasic lubrication. In the physiological sliding speed range, the PMPC TN hydrogel halved the friction compared to the DN hydrogel indicating the boundary lubricating PMPC network was working. A biocompatible, tough, strong and chondral lubrication imitating PMPC TN hydrogel was synthesised in this work. By complementing the biphasic and boundary lubrication mechanisms of cartilage, PMPC TN hydrogel could reduce the reported incidence of chondral damage opposite partial joint repair implants, and therefore increase the clinical efficacy of partial joint repair. STATEMENT OF SIGNIFICANCE: This paper presents the synthesis, characterisation and preliminary tribological testing of a new biomaterial that aims to recreate the primary chondral lubrication mechanisms: boundary and biphasic lubrication. This work has demonstrated that the introduction of an established zwitterionic, biomimetic boundary lubricant can improve the frictional properties of an ultra-tough hydrogel. This new biomaterial, when used as a partial joint replacement bearing material, may help avoid damage to the opposing chondral surface-which has been reported as an issue for other non-biomimetic partial joint replacement materials. Alongside the synthesis of a novel biomaterial focused on complementing the lubrication mechanisms of cartilage, your readership will gain insights into effective mechanical and tribological testing methods and materials characterisation methods for their own biomaterials.


Assuntos
Materiais Biocompatíveis , Cartilagem Articular , Fricção , Hidrogéis , Lubrificantes/química , Animais , Cartilagem Articular/citologia , Bovinos , Criança , Condrócitos/citologia , Humanos , Articulação do Joelho , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais
3.
J Biomech ; 60: 261-265, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28673665

RESUMO

This paper outlines a technique to measure fluid levels in articular cartilage tissue during an unconfined stress relaxation test. A time series of Raman spectrum were recorded during relaxation and the changes in the specific Raman spectral bands assigned to water and protein were monitored to determine the fluid content of the tissue. After 1000s unconfined compression the fluid content of the tissue is reduced by an average of 3.9%±1.7%. The reduction in fluid content during compression varies between samples but does not significantly increase with increasing strain. Further development of this technique will allow mapping of fluid distribution and flows during dynamic testing making it a powerful tool to understand the role of interstitial fluid in the functional performance of cartilage.


Assuntos
Cartilagem Articular/fisiologia , Líquido Extracelular/fisiologia , Animais , Pressão , Análise Espectral Raman , Estresse Mecânico , Suínos
4.
J Orthop Res ; 35(12): 2781-2789, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28462520

RESUMO

Zirconia in Zirconia toughened alumina ceramic hip replacements exists in an unstable state and can transform in response to stress giving the material improved fracture toughness. Phase transformation also occurs under hydrothermal conditions such as exist in vivo. To predict the hydrothermal aging that will occur in vivo accelerated aging procedures have been used, but validation of these models requires the study of retrieved hip joints. Here 26 retrievals are analysed to determine the degree of phase transformation in vivo. These were compared with virgin heads, heads that had undergone the accelerated aging process and heads wear tested to 5 million cycles in a hip simulator. Monoclinic content and surface roughness were measured using Raman spectroscopy and white light interferometry respectively. The monoclinic content for retrieved heads was 28.5% ± 7.8, greater than twice that in virgin, aged, or wear tested heads and did not have a significant correlation with time, contrary to the predictions of the hydrothermal aging model. The surface roughness for retrieved heads in the unworn area was not significantly different to that in virgin, aged, or unworn areas of wear tested heads. However in worn areas of the retrieved heads, the surface roughness was higher than observed in wear simulator testing. These results indicate that current testing methodologies do not fully capture the operational conditions of the material and the real performance of future new materials may not be adequately predicted by current pre-clinical testing methods. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society 35:2781-2789, 2017.


Assuntos
Prótese de Quadril/estatística & dados numéricos , Zircônio/química , Humanos , Teste de Materiais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA