Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cancer Ther ; 23(3): 301-315, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931033

RESUMO

Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Morte Celular
2.
Exp Dermatol ; 31(1): 43-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717019

RESUMO

Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P3 and PI(3,4)P2 regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, ß, δ & γ) leading to accumulation of PI3K-lipids. Importantly, PI3K-lipid accumulation is antagonized by the hydrolytic action of a number of PI3K-lipid phosphatases, most notably the melanoma suppressor PTEN (lipid phosphatase and tensin homologue). Downstream of PI3K-lipid production, the protein kinases AKT1-3 are believed to be key effectors of PI3'-kinase signalling in cells. Indeed, in preclinical models, activation of the PI3K→AKT signalling axis cooperates with alterations such as expression of the BRAFV600E oncoprotein kinase to promote melanoma progression and metastasis. In this review, we describe the different classes of PI3K-lipid effectors, and how they may promote melanomagenesis, influence the tumour microenvironment, melanoma maintenance and progression to metastatic disease. We also provide an update on both FDA-approved or experimental inhibitors of the PI3K→AKT pathway that are currently being evaluated for the treatment of melanoma either in preclinical models or in clinical trials.


Assuntos
Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ensaios Clínicos como Assunto , Humanos , Microambiente Tumoral
4.
Cell Rep ; 32(5): 107994, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755586

RESUMO

NTRK1 gene fusions are actionable drivers of numerous human malignancies. Here, we show that expression of the TPR-NTRK1 fusion kinase in immortalized mouse pancreatic ductal epithelial (IMPE) (pancreas) or mouse lung epithelial (MLE-12) cells is sufficient to promote rapidly growing tumors in mice. Both tumor models are exquisitely sensitive to targeted inhibition with entrectinib, a tropomyosin-related kinase A (TRKA) inhibitor. Initial regression of NTRK1-driven tumors is driven by induced expression of BIM, such that BIM silencing leads to a diminished response to entrectinib in vivo. However, the emergence of drug-resistant disease limits the long-term durability of responses. Based on the reactivation of RAF>MEK>ERK signaling observed in entrectinib-treated tumors, we show that the combination of entrectinib plus the MEK1/2 inhibitor cobimetinib dramatically forestalls the onset of drug resistance in vivo. Collectively, these data provide a mechanistic rationale for rapid clinical deployment of combined inhibition of TRKA plus MEK1/2 in NTRK1-driven cancers.


Assuntos
Benzamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indazóis/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos NOD , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia
5.
Mol Cancer Res ; 17(9): 1787-1800, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31138602

RESUMO

Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear. Using an established melanoma mouse model, we evaluated E17K, E40K, and Q79K mutations in AKT1, AKT2, and AKT3 and show that mice harboring tumors expressing AKT1E17K had the highest incidence of brain metastasis and lowest mean survival. Tumors expressing AKT1E17K displayed elevated levels of focal adhesion factors and enhanced phosphorylation of focal adhesion kinase (FAK). AKT1E17K expression in melanoma cells increased invasion and this was reduced by pharmacologic inhibition of either AKT or FAK. These data suggest that the different AKT paralogs have distinct roles in melanoma brain metastasis and that AKT and FAK may be promising therapeutic targets. IMPLICATIONS: This study suggests that AKT1E17K promotes melanoma brain metastasis through activation of FAK and provides a rationale for the therapeutic targeting of AKT and/or FAK to reduce melanoma metastasis.


Assuntos
Substituição de Aminoácidos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Melanoma/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA