Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 305: 55-65, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288732

RESUMO

Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et3N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic function were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et3Ns with essentially no cell type specificity. Predictors of s-Et3N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6h-treatments). For each s-Et3N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24-48h-treatments). Quinacrine was the most potent cytostatic drug (1-5µM). Co-treatment of cells with inhibitors of cholesterol, ß-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et3N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant.


Assuntos
Anticolesterolemiantes/farmacologia , Autofagia/efeitos dos fármacos , Colesterol/metabolismo , Citostáticos/farmacologia , Citotoxinas/farmacologia , Lovastatina/farmacologia , Amiodarona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cloroquina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxicloroquina/farmacologia , Lidocaína/farmacologia , Lisossomos , Proteínas Associadas aos Microtúbulos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Procainamida/farmacologia , Quinacrina/farmacologia , beta-Ciclodextrinas/farmacologia
2.
PeerJ ; 3: e1314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500823

RESUMO

The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM 9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H(+) ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and -2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependent in vivo autophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular uptake of micromolar quinacrine at the plasma membrane level. As shown in vitro and in vivo, V-ATPase-mediated cation sequestration is associated, above a certain threshold, to autophagic flux inhibition and feed-back lysosomogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA