Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Bone Miner Res ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484114

RESUMO

BACKGROUND: Osteoporosis (OP) and low bone mass can be debilitating and costly conditions if not acted on quickly. This disease is also difficult to diagnose as symptoms develop unnoticed until fracture occurs. Therefore, gaining understanding of the genetic risk associated with these conditions could be beneficial for healthcare professionals in early detection and prevention. METHODS: The Boston Puerto Rican Osteoporosis (BPROS) study, an ancillary study to the Boston Puerto Rican Health Study (BPRHS), collected information regarding bone and bone health. All bone measurements were taken during regular BPROS visits using dual-energy x-ray absorptiometry. Osteoporosis was defined as T-score ≤ -2.5 (2.5 SD or more below peak bone mass). Dietary variables were collected at the second wave of the BPRHS via food frequency questionnaire. We conducted genome-wide associations with bone outcomes including bone mineral density (BMD) and OP for 978 participants. We also examined interactions with dietary quality on the relationships between genotype and bone outcomes. We further tested if candidate genetic variants described in previous GWAS on OP and BMD contribute to OP risk in this population. RESULTS: Four variants were associated with OP: rs114829316 (IQCJ), rs76603051, rs12214684 (MCHR2), and rs77303493 (RIN2), and two variants with BMD of lumbar spine (rs11855618, CGNL1) and hip (rs73480593, NTRK2), reaching the genome-wide significance threshold of P ≤ 5E-08. In a gene-diet interaction analysis, we found that one SNP showed a significant interaction with the overall DASH score, and 7 SNPs with sugar-sweeten beverages, a major contributor to the DASH score. CONCLUSION: This study identifies new genetic markers related to osteoporosis and BMD in older Hispanic adults. Additionally, we uncovered unique genetic markers that interact with dietary quality, specifically sugar-sweetened beverages, in relation to bone health. These findings may be useful to guide early detection and preventative care.

2.
Lifestyle Genom ; 16(1): 124-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37473740

RESUMO

INTRODUCTION: Rate-limiting enzymes (RLEs) are innate slow points in metabolic pathways, and many function in bio-processes related to nutrient sensing. Many RLEs carry causal mutations relevant to inherited metabolic disorders. Because the activity of RLEs in cardiovascular health is poorly characterized, our objective was to assess their involvement in cardiometabolic health and disease and where altered biophysical and biochemical functions can promote disease. METHODS: A dataset of 380 human RLEs was compared to protein and gene datasets for factors likely to contribute to cardiometabolic disease, including proteins showing significant age-related altered expression in blood and genetic loci with variants that associate with common cardiometabolic phenotypes. The biochemical reactions catalyzed by RLEs were evaluated for metabolites enriched in RLE subsets associating with various cardiometabolic phenotypes. Most significance tests were based on Z-score enrichment converted to p values with a normal distribution function. RESULTS: Of 380 RLEs analyzed, 112 function in mitochondria, and 53 are assigned to inherited metabolic disorders. There was a depletion of RLE proteins known as aging biomarkers. At the gene level, RLEs were assessed for common genetic variants that associated with important cardiometabolic traits of LDL-cholesterol or any of the five outcomes pertinent to metabolic syndrome. This revealed several RLEs with links to cardiometabolic traits, from a minimum of 26 for HDL-cholesterol to a maximum of 45 for plasma glucose. Analysis of these GWAS-linked RLEs for enrichment of the molecular constituents of the catalyzed reactions disclosed a number of significant phenotype-metabolite links. These included blood pressure with acetate (p = 2.2 × 10-4) and NADP+ (p = 0.0091), plasma HDL-cholesterol and triglyceride with diacylglycerol (p = 2.6 × 10-5, 6.4 × 10-5, respectively) and diolein (p = 2.2 × 10-6, 5.9 × 10-6), and waist circumference with d-glucosamine-6-phosphate (p = 1.8 × 10-4). CONCLUSION: In the context of cardiometabolic health, aging, and disease, these results highlight key diet-derived metabolites that are central to specific rate-limited processes that are linked to cardiometabolic health. These metabolites include acetate and diacylglycerol, pertinent to blood pressure and triglycerides, respectively, as well as diacylglycerol and HDL-cholesterol.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Humanos , Diglicerídeos , Doenças Cardiovasculares/genética , Triglicerídeos , HDL-Colesterol , Doenças Metabólicas/genética , Envelhecimento/genética , Acetatos
3.
Front Genet ; 14: 1117778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873949

RESUMO

Background: Many epigenetic loci have been associated with plasma triglyceride (TG) levels, but epigenetic connections between those loci and dietary exposures are largely unknown. This study aimed to characterize the epigenetic links between diet, lifestyle, and TG. Methods: We first conducted an epigenome-wide association study (EWAS) for TG in the Framingham Heart Study Offspring population (FHS, n = 2,264). We then examined relationships between dietary and lifestyle-related variables, collected four times in 13 years, and differential DNA methylation sites (DMSs) associated with the last TG measures. Third, we conducted a mediation analysis to evaluate the causal relationships between diet-related variables and TG. Finally, we replicated three steps to validate identified DMSs associated with alcohol and carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 993). Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions. We identified 102 unique associations between these DMSs and one or more dietary and lifestyle-related variables. Alcohol and carbohydrate intake showed the most significant and consistent associations with 11 TG-associated DMSs. Mediation analyses demonstrated that alcohol and carbohydrate intake independently affect TG via DMSs as mediators. Higher alcohol intake was associated with lower methylation at seven DMSs and higher TG. In contrast, increased carbohydrate intake was associated with higher DNA methylation at two DMSs (CPT1A and SLC7A11) and lower TG. Validation in the GOLDN further supports the findings. Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes, particularly alcoholic drinks, which could affect the current cardiometabolic risk via epigenetic changes. This study illustrates a new method to map epigenetic signatures of environmental factors for disease risk. Identification of epigenetic markers of dietary intake can provide insight into an individual's risk of cardiovascular disease and support the application of precision nutrition. Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study (FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), NCT01023750.

4.
Nutrients ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36771351

RESUMO

The age-related loss of the cognitive function is a growing concern for global populations. Many factors that determine cognitive resilience or dementia also have metabolic functions. However, this duality is not universally appreciated when the action of that factor occurs in tissues external to the brain. Thus, we examined a set of genes involved in dementia, i.e., those related to vascular dementia, Alzheimer's disease, Parkinson's disease, and the human metabolism for activity in 12 metabolically active tissues. Mining the Genotype-Tissue Expression (GTEx) data showed that most of these metabolism-dementia (MD) genes (62 of 93, 67%) exhibit a higher median expression in any of the metabolically active tissues than in the brain. After identifying that several MD genes served as blood-based biomarkers of longevity in other studies, we examined the impact of the intake of food, nutrients, and other dietary factors on the expression of MD genes in whole blood in the Framingham Offspring Study (n = 2134). We observed positive correlations between flavonoids and HMOX1, taurine and UQCRC1, broccoli and SLC10A2, and myricetin and SLC9A8 (p < 2.09 × 10-4). In contrast, dairy protein, palmitic acid, and pie were negatively correlated, respectively, with the expression of IGF1R, CSF1R, and SLC9A8, among others (p < 2.92 × 10-4). The results of this investigation underscore the potential contributions of metabolic enzyme activity in non-brain tissues to the risk of dementia. Specific epidemiological or intervention studies could be designed using specific foods and nutrients or even dietary patterns focused on these foods and nutrients that influence the expression of some MD genes to verify the findings presented here.


Assuntos
Doença de Alzheimer , Demência Vascular , Humanos , Dieta , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Encéfalo , Cognição/fisiologia
5.
Sci Rep ; 12(1): 22585, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585421

RESUMO

Dilated cardiomyopathy (DCM), caused by genetic and environmental factors, usually progresses to heart failure, a major cause of death in elderly people. A diet-associated form of DCM was recently identified in pet dogs eating non-traditional (NT) diets. To identify potential dietary causes, we analyzed metabolomic signatures and gene set/pathway enrichment in (1) all dogs based on disease, diet, and their interactions and (2) dogs with DCM based on diet. Metabolomic analysis was performed in 38 dogs with DCM eating NT diets (DCM-NT), 8 dogs with DCM eating traditional diets, 12 healthy controls eating NT diets, and 17 healthy controls eating traditional diets. Overall, 153 and 63 metabolites differed significantly between dogs with DCM versus healthy controls and dogs eating NT versus traditional diets, respectively, with 12 metabolites overlapping both analyses. Protein-protein interaction networks and gene set enrichment analysis identified 105 significant pathways and gene sets including aging-related pathways (e.g., nuclear factor-kappa B, oxidative damage, inflammation). Seventeen metabolites differed significantly in dogs with DCM eating NT versus traditional diets (e.g., fatty acids, amino acids, legume biomarkers), suggesting different mechanisms for primary versus diet-associated DCM. Our multifaceted metabolomic assessment of DCM in dogs highlighted diet's role in some forms of DCM.


Assuntos
Cardiomiopatia Dilatada , Doenças do Cão , Insuficiência Cardíaca , Cães , Animais , Cardiomiopatia Dilatada/metabolismo , Dieta/veterinária , Insuficiência Cardíaca/complicações , Biomarcadores , Metabolômica , Doenças do Cão/metabolismo
6.
Front Nutr ; 8: 729822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595201

RESUMO

Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.

7.
Metabolomics ; 17(10): 88, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553271

RESUMO

INTRODUCTION: Obesity is a precursor of type 2 diabetes (T2D). OBJECTIVES: Our aim was to identify metabolic signatures of T2D and dietary factors unique to obesity. METHODS: We examined a subsample of the Boston Puerto Rican Health Study (BPRHS) population with a high prevalence of obesity and T2D at baseline (n = 806) and participants (without T2D at baseline) at 5-year follow-up (n = 412). We determined differences in metabolite profiles between T2D and non-T2D participants of the whole sample and according to abdominal obesity status. Enrichment analysis was performed to identify metabolic pathways that were over-represented by metabolites that differed between T2D and non-T2D participants. T2D-associated metabolites unique to obesity were examined for correlation with dietary food groups to understand metabolic links between dietary intake and T2D risk. False Discovery Rate method was used to correct for multiple testing. RESULTS: Of 526 targeted metabolites, 179 differed between T2D and non-T2D in the whole sample, 64 in non-obese participants and 120 unique to participants with abdominal obesity. Twenty-four of 120 metabolites were replicated and were associated with T2D incidence at 5-year follow-up. Enrichment analysis pointed to three metabolic pathways that were overrepresented in obesity-associated T2D: phosphatidylethanolamine (PE), long-chain fatty acids, and glutamate metabolism. Elevated intakes of three food groups, energy-dense takeout food, dairy intake and sugar-sweetened beverages, associated with 13 metabolites represented by the three pathways. CONCLUSION: Metabolic signatures of lipid and glutamate metabolism link obesity to T2D, in parallel with increased intake of dairy and sugar-sweetened beverages, thereby providing insight into the relationship between dietary habits and T2D risk.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Glutamatos , Hispânico ou Latino , Humanos , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade Abdominal/metabolismo
8.
Sci Rep ; 11(1): 15881, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354102

RESUMO

Dilated cardiomyopathy (DCM) is a disease of the heart muscle that affects both humans and dogs. Certain canine diets have been associated with DCM, but the diet-disease link is unexplained, and novel methods are needed to elucidate mechanisms. We conducted metabolomic profiling of 9 diets associated with canine DCM, containing ≥ 3 pulses, potatoes, or sweet potatoes as main ingredients, and in the top 16 dog diet brands most frequently associated with canine DCM cases reported to the FDA (3P/FDA diets), and 9 non-3P/FDA diets. We identified 88 named biochemical compounds that were higher in 3P/FDA diets and 23 named compounds that were lower in 3P/FDA diets. Amino acids, amino acid-derived compounds, and xenobiotics/plant compounds were the largest categories of biochemicals that were higher in 3P/FDA diets. Random forest analyses identified the top 30 compounds that distinguished the two diet groups with 100% predictive accuracy. Four diet ingredients distinguished the two diet groups (peas, lentils, chicken/turkey, and rice). Of these ingredients, peas showed the greatest association with higher concentrations of compounds in 3P/FDA diets. Moreover, the current foodomics analyses highlight relationships between diet and DCM in dogs that can identify possible etiologies for understanding diet-disease relationships in dogs and humans.


Assuntos
Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Dieta/efeitos adversos , Ração Animal/efeitos adversos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Cardiomiopatia Dilatada/veterinária , Dieta/veterinária , Doenças do Cão/etiologia , Cães , Ecocardiografia , Lens (Planta)/metabolismo , Metabolômica , Oryza/metabolismo , Pisum sativum/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-34413117

RESUMO

INTRODUCTION: We investigated whether network analysis revealed clusters of coregulated metabolites associated with prevalent type 2 diabetes (T2D) among Puerto Rican adults. RESEARCH DESIGN AND METHODS: We used liquid chromatography-mass spectrometry to measure fasting plasma metabolites (>600) among participants aged 40-75 years in the Boston Puerto Rican Health Study (BPRHS; discovery) and San Juan Overweight Adult Longitudinal Study (SOALS; replication), with (n=357; n=77) and without (n=322; n=934) T2D, respectively. Among BPRHS participants, we used unsupervised partial correlation network-based methods to identify and calculate metabolite cluster scores. Logistic regression was used to assess cross-sectional associations between metabolite clusters and prevalent T2D at the baseline blood draw in the BPRHS, and significant associations were replicated in SOALS. Inverse-variance weighted random-effect meta-analysis was used to combine cohort-specific estimates. RESULTS: Six metabolite clusters were significantly associated with prevalent T2D in the BPRHS and replicated in SOALS (false discovery rate (FDR) <0.05). In a meta-analysis of the two cohorts, the OR and 95% CI (per 1 SD increase in cluster score) for prevalent T2D were as follows for clusters characterized primarily by glucose transport (0.21 (0.16 to 0.30); FDR <0.0001), sphingolipids (0.40 (0.29 to 0.53); FDR <0.0001), acyl cholines (0.35 (0.22 to 0.56); FDR <0.0001), sugar metabolism (2.28 (1.68 to 3.09); FDR <0.0001), branched-chain and aromatic amino acids (2.22 (1.60 to 3.08); FDR <0.0001), and fatty acid biosynthesis (1.54 (1.29 to 1.85); FDR <0.0001). Three additional clusters characterized by amino acid metabolism, cell membrane components, and aromatic amino acid metabolism displayed significant associations with prevalent T2D in the BPRHS, but these associations were not replicated in SOALS. CONCLUSIONS: Among Puerto Rican adults, we identified several known and novel metabolite clusters that associated with prevalent T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Hispânico ou Latino , Humanos , Estudos Longitudinais
10.
Front Genet ; 12: 783845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047011

RESUMO

Obesity is associated with many chronic diseases that impair healthy aging and is governed by genetic, epigenetic, and environmental factors and their complex interactions. This study aimed to develop a model that predicts an individual's risk of obesity by better characterizing these complex relations and interactions focusing on dietary factors. For this purpose, we conducted a combined genome-wide and epigenome-wide scan for body mass index (BMI) and up to three-way interactions among 402,793 single nucleotide polymorphisms (SNPs), 415,202 DNA methylation sites (DMSs), and 397 dietary and lifestyle factors using the generalized multifactor dimensionality reduction (GMDR) method. The training set consisted of 1,573 participants in exam 8 of the Framingham Offspring Study (FOS) cohort. After identifying genetic, epigenetic, and dietary factors that passed statistical significance, we applied machine learning (ML) algorithms to predict participants' obesity status in the test set, taken as a subset of independent samples (n = 394) from the same cohort. The quality and accuracy of prediction models were evaluated using the area under the receiver operating characteristic curve (ROC-AUC). GMDR identified 213 SNPs, 530 DMSs, and 49 dietary and lifestyle factors as significant predictors of obesity. Comparing several ML algorithms, we found that the stochastic gradient boosting model provided the best prediction accuracy for obesity with an overall accuracy of 70%, with ROC-AUC of 0.72 in test set samples. Top predictors of the best-fit model were 21 SNPs, 230 DMSs in genes such as CPT1A, ABCG1, SLC7A11, RNF145, and SREBF1, and 26 dietary factors, including processed meat, diet soda, French fries, high-fat dairy, artificial sweeteners, alcohol intake, and specific nutrients and food components, such as calcium and flavonols. In conclusion, we developed an integrated approach with ML to predict obesity using omics and dietary data. This extends our knowledge of the drivers of obesity, which can inform precision nutrition strategies for the prevention and treatment of obesity. Clinical Trial Registration: [www.ClinicalTrials.gov], the Framingham Heart Study (FHS), [NCT00005121].

11.
Bone ; 144: 115780, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278656

RESUMO

BACKGROUND: The impact of nutrition on the metabolic profile of osteoporosis (OS) is unknown. OBJECTIVE: Identify biochemical factors driving the association of fruit and vegetable (FV) intakes with OS prevalence using an untargeted metabolomics approach. DESIGN: Cross-sectional dietary, anthropometric and plasma metabolite data were examined from the Boston Puerto Rican Osteoporosis Study, n = 600 (46-79 yr). METHODS: Bone mineral density was assessed by DXA. OS was defined by clinical standards. A culturally adapted FFQ assessed usual dietary intake. Principal components analysis (PCA) of 42 FV items created 6 factors. Metabolomic profiles derived from plasma samples were assessed on a commercial platform. Differences in levels of 525 plasma metabolites between disease groups (OS vs no-OS) were compared using logistic regression; and associations with FV intakes by multivariable linear regression, adjusted for covariates. Metabolites significantly associated with OS status or with total FV intake were analyzed for enrichment in various biological pathways using Mbrole 2.0, MetaboAnalyst, and Reactome, using FDR correction of P-values. Correlation coefficients were calculated as Spearman's rho rank correlations, followed by hierarchical clustering of the resulting correlation coefficients using PCA FV factors and sex-specific sets of OS-associated metabolites. RESULTS: High FV intake was inversely related to OS prevalence (Odds Ratio = 0.73; 95% CI = 0.57, 0.94; P = 0.01). Several biological processes affiliated with the FV-associating metabolites, including caffeine metabolism, carnitines and fatty acids, and glycerophospholipids. Important processes identified with OS-associated metabolites were steroid hormone biosynthesis in women and branched-chain amino acid metabolism in men. Factors derived from PCA were correlated with the OS-associated metabolites, with high intake of dark leafy greens and berries/melons appearing protective in both sexes. CONCLUSIONS: These data warrant investigation into whether increasing intakes of dark leafy greens, berries and melons causally affect bone turnover and BMD among middle-aged and older adults at risk for osteoporosis via sex-specific metabolic pathways, and how gene-diet interactions alter these sex-specific metabolomic-osteoporosis links. ClinicalTrials.gov Identifier: NCT01231958.


Assuntos
Osteoporose , Verduras , Idoso , Estudos Transversais , Dieta , Feminino , Frutas , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/epidemiologia
12.
Am J Clin Nutr ; 112(5): 1200-1211, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930325

RESUMO

BACKGROUND: Epigenome-wide association studies identified the cg00574958 DNA methylation site at the carnitine palmitoyltransferase-1A (CPT1A) gene to be associated with reduced risk of metabolic diseases (hypertriglyceridemia, obesity, type 2 diabetes, hypertension, metabolic syndrome), but the mechanism underlying these associations is unknown. OBJECTIVES: We aimed to elucidate whether carbohydrate and fat intakes modulate cg00574958 methylation and the risk of metabolic diseases. METHODS: We examined associations between carbohydrate (CHO) and fat (FAT) intake, as percentages of total diet energy, and the CHO/FAT ratio with CPT1A-cg00574958, and the risk of metabolic diseases in 3 populations (Genetics of Lipid Lowering Drugs and Diet Network, n = 978; Framingham Heart Study, n = 2331; and REgistre GIroní del COR study, n = 645) while adjusting for confounding factors. To understand possible causal effects of dietary intake on the risk of metabolic diseases, we performed meta-analysis, CPT1A transcription analysis, and mediation analysis with CHO and FAT intakes as exposures and cg00574958 methylation as the mediator. RESULTS: We confirmed strong associations of cg00574958 methylation with metabolic phenotypes (BMI, triglyceride, glucose) and diseases in all 3 populations. Our results showed that CHO intake and CHO/FAT ratio were positively associated with cg00574958 methylation, whereas FAT intake was negatively correlated with cg00574958 methylation. Meta-analysis further confirmed this strong correlation, with ß = 58.4 ± 7.27, P = 8.98 x 10-16 for CHO intake; ß = -36.4 ± 5.95, P = 9.96 x 10-10 for FAT intake; and ß = 3.30 ± 0.49, P = 1.48 x 10-11 for the CHO/FAT ratio. Furthermore, CPT1A mRNA expression was negatively associated with CHO intake, and positively associated with FAT intake, and metabolic phenotypes. Mediation analysis supports the hypothesis that CHO intake induces CPT1A methylation, hence reducing the risk of metabolic diseases, whereas FAT intake inhibits CPT1A methylation, thereby increasing the risk of metabolic diseases. CONCLUSIONS: Our results suggest that the proportion of total energy supplied by CHO and FAT can have a causal effect on the risk of metabolic diseases via the epigenetic status of CPT1A.Study registration at https://www.clinicaltrials.gov/: the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)-NCT01023750; and the Framingham Heart Study (FHS)-NCT00005121.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Epigênese Genética , Adulto , Idoso , Carnitina O-Palmitoiltransferase/genética , Epigenoma , Feminino , Regulação Enzimológica da Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
13.
Front Genet ; 11: 622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612641

RESUMO

Statin is the medication most widely prescribed to reduce plasma cholesterol levels. Yet, how the medication contributes to diabetes risk and impaired glucose metabolism is not clear. This study aims to examine the epigenetic mechanisms of ABCG1 through which statin use associates with risk of type 2 diabetes. We determined the association between the statin use, DNA methylation at ABCG1 and type 2 diabetes/glycemic traits in the Framingham Heart Study Offspring (FHS, n = 2741), with validation in the Women's Health Initiative Study (WHI, n = 2020). The causal effect of statin use on the risk of type 2 diabetes was examined using a two-step Mendelian randomization approach. Next, based on transcriptome analysis, we determined the links between the medication-associated epigenetic status of ABCG1 and biological pathways on the pathogenesis of type 2 diabetes. Our results showed that DNA methylation levels at cg06500161 of ABCG1 were positively associated with the use of statin, type 2 diabetes and related traits (fasting glucose and insulin) in FHS and WHI. Two-step Mendelian randomization suggested a causal effect of statin use on type 2 diabetes and related traits through epigenetic mechanisms, specifically, DNA methylation at cg06500161. Our results highlighted that gene expression of ABCG1, ABCA1 and ACSL3, involved in both cholesterol metabolism and glycemic pathways, was inversely associated with statin use, CpG methylation, and diabetic signatures. We concluded that DNA methylation site cg06500161 at ABCG1 is a mediator of the association between statins and risk of type 2 diabetes.

14.
BMC Bioinformatics ; 21(1): 238, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522154

RESUMO

BACKGROUND: Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly established or unknown mechanisms. While there is a wealth of data on the biological and biophysical properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds commonly present in food. Computational methods for high-throughput identification of food compounds with specific biological effects, especially when accompanied by relevant food composition data, could enable more effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of foods and food compounds. RESULTS: PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a library of food compounds with known molecular structures from the FooDB database. The output is a list of food compounds with high confidence of eliciting relevant biological effects, along with their source foods and associated quantities in those foods, where available. Applying PhyteByte to the human PPARG gene, we identified irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified agonists of this important metabolic regulator. CONCLUSIONS: PhyteByte identifies food-based compounds that are predicted to interact with specific protein targets. The identified relationships can be used to prioritize food compounds for experimental or epidemiological follow-up and can contribute to the rapid development of precision approaches to new nutraceuticals as well as personalized dietary planning.


Assuntos
Análise de Alimentos/métodos , Compostos Fitoquímicos/química , Humanos
15.
J Obes ; 2020: 7154738, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399287

RESUMO

Background: Sugar-sweetened beverage (SSB) consumption is highly associated with obesity, but the metabolic mechanism underlying this correlation is not understood. Objective: Our objective was to examine metabolomic links between SSB intake and obesity to understand metabolic mechanisms. Design: We examined the association of plasma metabolomic profiles with SSB intake and obesity risk in 781 participants, aged 45-75 y, in the Boston Puerto Rican Health Study (BPRHS) using generalized linear models, controlling for potential confounding factors. Based on identified metabolites, we conducted pathway enrichment analysis to identify potential metabolic pathways that link SSB intake and obesity risk. Variants in genes encoding enzymes known to function in identified metabolic pathways were examined for their interactions with SSB intake on obesity. Results: SSB intake was correlated with BMI (ß = 0.607, P=0.045). Among 526 measured metabolites, 86 showed a significant correlation with SSB intake and 148 with BMI (P ≤ 0.05); 28 were correlated with both SSB intake and BMI (P ≤ 0.05). Pathway enrichment analysis identified the phosphatidylcholine and lysophospholipid pathways as linking SSB intake to obesity, after correction for multiple testing. Furthermore, 8 of 10 genes functioning in these two pathways showed strong interaction with SSB intake on BMI. Our results further identified participants who may exhibit an increased risk of obesity when consuming SSB. Conclusions: We identified two key metabolic pathways that link SSB intake to obesity, revealing the potential of phosphatidylcholine and lysophospholipid to modulate how SSB intake can increase obesity risk. The interaction between genetic variants related to these pathways and SSB intake on obesity further supports the mechanism.


Assuntos
Obesidade/metabolismo , Bebidas Adoçadas com Açúcar/efeitos adversos , Aciltransferases/genética , Idoso , Ingestão de Energia , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Obesidade/etiologia
16.
Clin Chem ; 66(5): 718-726, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32337541

RESUMO

BACKGROUND: Copy number variation (CNV) in the salivary amylase gene (AMY1) modulates salivary α-amylase levels and is associated with postprandial glycemic traits. Whether AMY1-CNV plays a role in age-mediated change in insulin resistance (IR) is uncertain. METHODS: We measured AMY1-CNV using duplex quantitative real-time polymerase chain reaction in two studies, the Boston Puerto Rican Health Study (BPRHS, n = 749) and the Genetics of Lipid-Lowering Drug and Diet Network study (GOLDN, n = 980), and plasma metabolomic profiles in the BPRHS. We examined the interaction between AMY1-CNV and age by assessing the relationship between age with glycemic traits and type 2 diabetes (T2D) according to high or low copy numbers of the AMY1 gene. Furthermore, we investigated associations between metabolites and interacting effects of AMY1-CNV and age on T2D risk. RESULTS: We found positive associations of IR with age among subjects with low AMY1-copy-numbers in both studies. T2D was marginally correlated with age in participants with low AMY1-copy-numbers but not with high AMY1-copy-numbers in the BPRHS. Metabolic pathway enrichment analysis identified the pentose metabolic pathway based on metabolites that were associated with both IR and the interactions between AMY1-CNV and age. Moreover, in older participants, high AMY1-copy-numbers tended to be associated with lower levels of ribonic acid, erythronic acid, and arabinonic acid, all of which were positively associated with IR. CONCLUSIONS: We found evidence supporting a role of AMY1-CNV in modifying the relationship between age and IR. Individuals with low AMY1-copy-numbers tend to have increased IR with advancing age.


Assuntos
Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 2/etiologia , Resistência à Insulina/genética , alfa-Amilases Salivares/genética , Fatores Etários , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
17.
Am J Clin Nutr ; 111(4): 893-902, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135010

RESUMO

BACKGROUND: Although diet response prediction for cardiometabolic risk factors (CRFs) has been demonstrated using single genetic variants and main-effect genetic risk scores, little investigation has gone into the development of genome-wide diet response scores. OBJECTIVE: We sought to leverage the multistudy setup of the Women's Health Initiative cohort to generate and test genetic scores for the response of 6 CRFs (BMI, systolic blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, and fasting glucose) to dietary fat. METHODS: A genome-wide interaction study was undertaken for each CRF in women (n ∼ 9000) not participating in the dietary modification (DM) trial, which focused on the reduction of dietary fat. Genetic scores based on these analyses were developed using a pruning-and-thresholding approach and tested for the prediction of 1-y CRF changes as well as long-term chronic disease development in DM trial participants (n ∼ 5000). RESULTS: Only 1 of these genetic scores, for LDL cholesterol, predicted changes in the associated CRF. This 1760-variant score explained 3.7% (95% CI: 0.09, 11.9) of the variance in 1-y LDL cholesterol changes in the intervention arm but was unassociated with changes in the control arm. In contrast, a main-effect genetic risk score for LDL cholesterol was not useful for predicting dietary fat response. Further investigation of this score with respect to downstream disease outcomes revealed suggestive differential associations across DM trial arms, especially with respect to coronary heart disease and stroke subtypes. CONCLUSIONS: These results lay the foundation for the combination of many genome-wide gene-diet interactions for diet response prediction while highlighting the need for further research and larger samples in order to achieve robust biomarkers for use in personalized nutrition.


Assuntos
Doenças Cardiovasculares/genética , Gorduras na Dieta/metabolismo , Idoso , Pressão Sanguínea , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , Saúde da Mulher
18.
J Nutr ; 149(7): 1116-1121, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070756

RESUMO

BACKGROUND: Dietary intervention (DI) is a primary strategy to attenuate some of the metabolic abnormalities associated with metabolic syndrome (MetS), including low HDL cholesterol. There is no biomarker that can identify individuals who respond to DI by increasing HDL cholesterol. OBJECTIVE: The aim of this study was to assess the predictive power of a genetic predisposition score (GPS) in Mexican adults with MetS to identify HDL cholesterol responders to DI. METHODS: This study followed a prospective cohort design. Sixty-seven Mexican adults aged 20-60 y (21% men) with BMI ≥25 and ≤39.9 kg/m², who had at least 3 of 5 positive criteria for MetS, were included. Participants consumed a low saturated fat diet for 2.5 mo (<7% energy as saturated fat, <200 mg of cholesterol/d) and reduced their usual diet by ∼440 kcal/d, a reduction in total energy intake of about 25%. Anthropometry and serum biochemical markers, including HDL cholesterol, were measured before and after DI. A multilocus GPS was constructed using previously reported genetic variants associated with response to diet in subjects with MetS. GPS values, designed to predict the response of HDL cholesterol to the DI, were computed for each individual as the sum of the number of effect alleles across 14 SNPs. RESULTS: Individuals were dichotomized as high and low GPS according to median GPS (-2.12) and we observed a difference in HDL cholesterol changes on DI of +3 mg/dL (6.3%) in subjects with low GPS, whereas those with high GPS had HDL cholesterol decreases of -3 mg/dL (-7.9%) (P = 0.04). CONCLUSIONS: Individuals with low GPS showed greater increases in their HDL cholesterol than those with high GPS. Therefore, the GPS can be useful for predicting the HDL cholesterol response to diet.


Assuntos
HDL-Colesterol/sangue , Síndrome Metabólica/dietoterapia , Adulto , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
19.
FASEB J ; 33(1): 965-977, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096038

RESUMO

We recently reported that epicatechin, a bioactive compound that occurs naturally in various common foods, promoted general health and survival of obese diabetic mice. It remains to be determined whether epicatechin extends health span and delays the process of aging. In the present study, epicatechin or its analogue epigallocatechin gallate (EGCG) (0.25% w/v in drinking water) was administered to 20-mo-old male C57BL mice fed a standard chow. The goal was to determine the antiaging effect. The results showed that supplementation with epicatechin for 37 wk strikingly increased the survival rate from 39 to 69%, whereas EGCG had no significant effect. Consistently, epicatechin improved physical activity, delayed degeneration of skeletal muscle (quadriceps), and shifted the profiles of the serum metabolites and skeletal muscle general mRNA expressions in aging mice toward the profiles observed in young mice. In particular, we found that dietary epicatechin significantly reversed age-altered mRNA and protein expressions of extracellular matrix and peroxisome proliferator-activated receptor pathways in skeletal muscle, and reversed the age-induced declines of the nicotinate and nicotinamide pathway both in serum and skeletal muscle. The present study provides evidence that epicatechin supplementation can exert an antiaging effect, including an increase in survival, an attenuation of the aging-related deterioration of skeletal muscles, and a protection against the aging-related decline in nicotinate and nicotinamide metabolism.-Si, H., Wang, X., Zhang, L., Parnell, L. D., Admed, B., LeRoith, T., Ansah, T.-A., Zhang, L., Li, J., Ordovás, J. M., Si, H., Liu, D., Lai, C.-Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice.


Assuntos
Catequina/administração & dosagem , Dieta , Músculo Esquelético/patologia , Envelhecimento/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , NAD/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Taxa de Sobrevida
20.
Cancer Epidemiol Biomarkers Prev ; 27(12): 1416-1423, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291114

RESUMO

BACKGROUND: Obesity, a risk factor for colorectal cancer, raises systemic levels of proinflammatory mediators. Whether increased levels also reside in the colons of obese individuals and are accompanied by procancerous alterations in the mucosal transcriptome is unknown. METHODS: Concentrations of TNFα, IL1ß, and IL6 in blood and colonic mucosa of 16 lean and 26 obese individuals were examined. Differences in the mucosal transcriptome between the two groups were defined. RESULTS: Plasma IL6 and TNFα were 1.4- to 3-fold elevated in obese subjects [body mass index (BMI) ≥ 34 kg/m2] compared with the lean controls (P < 0.01). Among individuals with BMI ≥ 34 kg/m2 colonic concentrations of IL6 and TNFα were 2- to 3-fold greater than in lean subjects (P < 0.03). In a general linear model, adjusted for NSAID use, colonic IL6 (partial r = 0.41; P < 0.01) and TNFα (partial r = 0.41; P = 0.01) increased incrementally over the entire range of BMIs (18.1-45.7). Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) was associated with a reduction in colonic IL6 (ß = -0.65, P < 0.02). RNA sequencing (NSAID users excluded) identified 182 genes expressed differentially between lean and obese subjects. The two gene networks most strongly linked to changes in expression included several differentially expressed genes known to regulate the procarcinogenic signaling pathways, NFκB and ERK 1/2, in a pattern consistent with upregulation of each in the obese subjects. CONCLUSIONS: Incremental increases in two major proinflammatory colonic cytokines are associated with increasing BMI, and in the obese state are accompanied by procancerous changes in the transcriptome. IMPACT: These observations delineate means by which an inflammatory milieu may contribute to obesity-promoted colon cancer.


Assuntos
Adiposidade/genética , Colo/metabolismo , Interleucina-6/metabolismo , Obesidade/complicações , Fator de Necrose Tumoral alfa/metabolismo , Idoso , Colo/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA