Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Immunotoxicol ; 21(1): 2332177, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578203

RESUMO

Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.


Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatopatias , Humanos , Interleucina-2 , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Preparações Farmacêuticas
2.
Front Immunol ; 14: 1275368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045689

RESUMO

Introduction: Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods: Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results: We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion: The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interleucina-2/farmacologia , Linfócitos T CD8-Positivos , Doença Hepática Induzida por Substâncias e Drogas/etiologia
3.
Adv Pharmacol ; 98: 83-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524493

RESUMO

Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Azitromicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982945

RESUMO

A promising new approach to broad spectrum antiviral drugs is the inhibition of the eukaryotic translation initiation factor 4A (elF4A), a DEAD-box RNA helicase that effectively reduces the replication of several pathogenic virus types. Beside the antipathogenic effect, modulation of a host enzyme activity could also have an impact on the immune system. Therefore, we performed a comprehensive study on the influence of elF4A inhibition with natural and synthetic rocaglates on various immune cells. The effect of the rocaglates zotatifin, silvestrol and CR-31-B (-), as well as the nonactive enantiomer CR-31-B (+), on the expression of surface markers, release of cytokines, proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdMs), monocyte-derived dendritic cells (MdDCs), T cells and B cells was assessed. The inhibition of elF4A reduced the inflammatory potential and energy metabolism of M1 MdMs, whereas in M2 MdMs, drug-specific and less target-specific effects were observed. Rocaglate treatment also reduced the inflammatory potential of activated MdDCs by altering cytokine release. In T cells, the inhibition of elF4A impaired their activation by reducing the proliferation rate, expression of CD25 and cytokine release. The inhibition of elF4A further reduced B-cell proliferation, plasma cell formation and the release of immune globulins. In conclusion, the inhibition of the elF4A RNA helicase with rocaglates suppressed the function of M1 MdMs, MdDCs, T cells and B cells. This suggests that rocaglates, while inhibiting viral replication, may also suppress bystander tissue injury by the host immune system. Thus, dosing of rocaglates would need to be adjusted to prevent excessive immune suppression without reducing their antiviral activity.


Assuntos
Antineoplásicos , Macrófagos , Humanos , Citocinas/farmacologia , Antineoplásicos/farmacologia , RNA Helicases , Antivirais/farmacologia , Metabolismo Energético
5.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145307

RESUMO

We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, as well as the mutagenic and genotoxic potential with Ames and micronuclei tests, respectively. To identify off-target effects, we investigated whether silvestrol modulates G-protein coupled receptor (GPCR) signaling pathways. To predict the bioavailability of silvestrol, its stability, permeability and cellular uptake were determined. Silvestrol reduced viability in a cell-type-dependent manner, mediated no off-target effects via GPCRs, had no mutagenic potential and minor genotoxic effects at 50 nM. Silvestrol did not disturb cell barrier integrity, showed low membrane permeability, was stable in liver microsomes and exhibited good cellular uptake. Efficient cellular uptake and increased cytotoxicity were observed in cell lines with a low expression level of the transport protein P-glycoprotein, the known efflux transporter of silvestrol. In conclusion, silvestrol showed low permeability but good cellular uptake and high stability. Cell-type-dependent cytotoxicity seems to be caused by the accumulation of silvestrol in cells lacking the ability to expel silvestrol due to low P-glycoprotein levels.

6.
Front Aging Neurosci ; 14: 876826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572151

RESUMO

A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer's disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL-G-F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL-G-F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL-G-F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-ß burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-ß according to the "amyloid hypothesis," nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL-G-F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.

7.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216184

RESUMO

The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird's eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.


Assuntos
Preparações Farmacêuticas/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos
8.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052778

RESUMO

Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.

9.
Front Behav Neurosci ; 15: 755812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744655

RESUMO

Laboratory workflows and preclinical models have become increasingly diverse and complex. Confronted with the dilemma of a multitude of information with ambiguous relevance for their specific experiments, scientists run the risk of overlooking critical factors that can influence the planning, conduct and results of studies and that should have been considered a priori. To address this problem, we developed "PEERS" (Platform for the Exchange of Experimental Research Standards), an open-access online platform that is built to aid scientists in determining which experimental factors and variables are most likely to affect the outcome of a specific test, model or assay and therefore ought to be considered during the design, execution and reporting stages. The PEERS database is categorized into in vivo and in vitro experiments and provides lists of factors derived from scientific literature that have been deemed critical for experimentation. The platform is based on a structured and transparent system for rating the strength of evidence related to each identified factor and its relevance for a specific method/model. In this context, the rating procedure will not solely be limited to the PEERS working group but will also allow for a community-based grading of evidence. We here describe a working prototype using the Open Field paradigm in rodents and present the selection of factors specific to each experimental setup and the rating system. PEERS not only offers users the possibility to search for information to facilitate experimental rigor, but also draws on the engagement of the scientific community to actively expand the information contained within the platform. Collectively, by helping scientists search for specific factors relevant to their experiments, and to share experimental knowledge in a standardized manner, PEERS will serve as a collaborative exchange and analysis tool to enhance data validity and robustness as well as the reproducibility of preclinical research. PEERS offers a vetted, independent tool by which to judge the quality of information available on a certain test or model, identifies knowledge gaps and provides guidance on the key methodological considerations that should be prioritized to ensure that preclinical research is conducted to the highest standards and best practice.

10.
Pharmacol Rev ; 73(4): 233-262, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34716226

RESUMO

Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.


Assuntos
COVID-19 , Macrolídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Humanos , Macrolídeos/farmacologia , SARS-CoV-2
11.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299312

RESUMO

It is well known that lifestyle changes can alter several physiological functions in the human body. For exercise and diet, these effects are used sensibly in basic therapies, as in cardiovascular diseases. However, the physiological changes induced by exercise and a modified diet also have the capacity to influence the efficacy and toxicity of several drugs, mainly by affecting different pharmacokinetic mechanisms. This pharmacological plasticity is not clinically relevant in all cases but might play an important role in altering the effects of very common drugs, particularly drugs with a narrow therapeutic window. Therefore, with this review, we provide insights into possible food-drug and exercise-drug interactions to sharpen awareness of the potential occurrence of such effects.


Assuntos
Dieta , Exercício Físico/fisiologia , Farmacocinética , Peso Corporal , Dieta Saudável , Interações Medicamentosas , Interações Alimento-Droga , Humanos , Fenômenos do Sistema Imunitário , Estilo de Vida , Microbiota , Modelos Biológicos , Fenômenos Fisiológicos da Nutrição
12.
J Inflamm Res ; 14: 2569-2582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163212

RESUMO

BACKGROUND: Sodium bituminosulfonate is derived from naturally occurring sulphur-rich oil shale and is used for the treatment of the inflammatory skin disease rosacea. Major molecular players in the development of rosacea include the release of enzymes that process antimicrobial peptides which, together with reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF), promote pro-inflammatory processes and angiogenesis. The aim of this study was to address the molecular mechanism(s) underlying the therapeutic benefit of the formulation sodium bituminosulfonate dry substance (SBDS), which is indicated for the treatment of skin inflammation, including rosacea. METHODS: We investigated whether SBDS regulates the expression of cytokines, the release of the antimicrobial peptide LL-37, calcium mobilization, proteases (matrix metalloproteinase, elastase, kallikrein (KLK)5), VEGF or ROS in primary human neutrophils. In addition, activity assays with 5-lipoxygenase (5-LO) and recombinant human MMP9 and KLK5 were performed. RESULTS: We observed that SBDS reduces the release of the antimicrobial peptide LL-37, calcium, elastase, ROS and VEGF from neutrophils. Moreover, KLK5, the enzyme that converts cathelicidin to LL-37, and 5-LO that produces leukotriene (LT)A4, the precursor of LTB4, were both inhibited by SBDS with an IC50 of 7.6 µg/mL and 33 µg/mL, respectively. CONCLUSION: Since LTB4 induces LL-37 which, in turn, promotes increased intracellular calcium levels and thereby, ROS/VEGF/elastase release, SBDS possibly regulates the LTB4/LL-37/calcium - ROS/VEGF/elastase axis by inhibiting 5-LO and KLK5. Additional direct effects on other pro-inflammatory pathways such as ROS generation cannot be ruled out. In summary, SBDS reduces the generation of inflammatory mediators from human neutrophils possibly accounting for its anti-inflammatory effects in rosacea.

13.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809617

RESUMO

This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Genes Reporter , Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases/farmacologia , Macrófagos/metabolismo , Fosfatase Alcalina/metabolismo , Azepinas/farmacologia , Proteína delta de Ligação ao Facilitador CCAAT/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Medições Luminescentes , Macrófagos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Tiofenos/farmacologia , Vorinostat/farmacologia
14.
Aquat Toxicol ; 234: 105798, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799113

RESUMO

A wide variety of active pharmaceutical ingredients are released into the environment and pose a threat to aquatic organisms. Drug products using micro- and nanoparticle technology can lower these emissions into the environment by their increased bioavailability to the human patients. However, due to this enhanced efficacy, micro- and nanoscale drug delivery systems can potentially display an even higher toxicity, and thus also pose a risk to non-target organisms. Fenofibrate is a lipid-regulating agent and exhibits species-related hazards in fish. The ecotoxic effects of a fenofibrate formulation embedded into a hydroxypropyl methylcellulose microparticle matrix, as well as those of the excipients used in the formulation process, were evaluated. To compare the effects of fenofibrate without a formulation, fenofibrate was dispersed in diluted ISO water alone or dissolved in the solvent DMF and then added to diluted ISO water. The effects of these various treatments were assessed using the fish embryo toxicity test, acridine orange staining and gene expression analysis assessed by quantitative RT polymerase chain reaction. Exposure concentrations were assessed by chemical analysis. The effect threshold concentrations of fenofibrate microparticle precipitates were higher compared to the formulation. Fenofibrate dispersed in 20%-ISO-water displayed the lowest toxicity. For the fenofibrate formulation as well as for fenofibrate added as a DMF solution, greater ecotoxic effects were observed in the zebrafish embryos. The chemical analysis of the solutions revealed that more fenofibrate was present in the samples with the fenofibrate formulation as well as fenofibrate added as a DMF solution compared to fenofibrate dispersed in diluted ISO water. This could explain the higher ecotoxicity. The toxic effects on the zebrafish embryo thus suggested that the formulation as well as the solvent increased the bioavailability of fenofibrate.


Assuntos
Fenofibrato/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Fenofibrato/análise , Fenofibrato/química , Regulação da Expressão Gênica/efeitos dos fármacos , Espectrometria de Massas , Tamanho da Partícula , Testes de Toxicidade , Peixe-Zebra/metabolismo
15.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477684

RESUMO

Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer's disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Cromatografia Líquida , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Espectrometria de Massas em Tandem
16.
Environ Res ; 192: 110219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980299

RESUMO

Today, environmental pollution with pharmaceutical drugs and their metabolites poses a major threat to the aquatic ecosystems. Active substances such as fenofibrate, are processed to pharmaceutical drug formulations before they are degraded by the human body and released into the wastewater. Compared to the conventional product Lipidil® 200, the pharmaceutical product Lipidil 145 One® and Ecocaps take advantage of nanotechnology to improve uptake and bioavailability of the drug in humans. In the present approach, a combination of in vitro drug release studies and physiologically-based biopharmaceutics modeling was applied to calculate the emission of three formulations of fenofibrate (Lipidil® 200, Lipidil 145 One®, Ecocaps) into the environment. Special attention was paid to the metabolized and non-metabolized fractions and their individual toxicity, as well as to the emission of nanomaterials. The fish embryo toxicity test revealed a lower aquatic toxicity for the metabolite fenofibric acid and therefore an improved toxicity profile. When using the microparticle formulation Lipidil® 200, an amount of 126 mg of non-metabolized fenofibrate was emitted to the environment. Less than 0.05% of the particles were in the lower nanosize range. For the nanotechnology-related product Lipidil 145 One®, the total drug emission was reduced by 27.5% with a nanomaterial fraction of approximately 0.5%. In comparison, the formulation prototype Ecocaps reduced the emission of fenofibrate by 42.5% without any nanomaterials entering the environment. In a streamlined life cycle assessment, the lowered dose in combination with a lowered drug-to-metabolite ratio observed for Ecocaps led to a reduction of the full life cycle impacts of fenofibrate with a reduction of 18% reduction in the global warming potential, 61% in ecotoxicity, and 15% in human toxicity. The integrated environmental assessment framework highlights the outstanding potential of advanced modeling technologies to determine environmental impacts of pharmaceuticals during early drug development using preclinical in vitro data.


Assuntos
Ecossistema , Preparações Farmacêuticas , Animais , Disponibilidade Biológica , Humanos , Nanotecnologia , Águas Residuárias
17.
J Mol Med (Berl) ; 99(2): 261-272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33330947

RESUMO

Developing resistance mechanisms of pathogens against established and frequently used drugs are a growing global health problem. Besides the development of novel drug candidates per se, new approaches to counteract resistance mechanisms are needed. Drug candidates that not only target the pathogens directly but also modify the host immune system might boost anti-parasitic defence and facilitate clearance of pathogens. In this study, we investigated whether the novel anti-parasitic steroid compound 1o (sc1o), effective against the parasites Plasmodium falciparum and Schistosoma mansoni, might exhibit immunomodulatory properties. Our results reveal that 50 µM sc1o amplified the inflammatory potential of M1 macrophages and shifted M2 macrophages in a pro-inflammatory direction. Since M1 macrophages used predominantly glycolysis as an energy source, it is noteworthy that sc1o increased glycolysis and decreased oxidative phosphorylation in M2 macrophages. The effect of sc1o on the differentiation and activation of dendritic cells was ambiguous, since both pro- and anti-inflammatory markers were regulated. In conclusion, sc1o has several immunomodulatory effects that could possibly assist the immune system by counteracting the anti-inflammatory immune escape strategy of the parasite P. falciparum or by increasing pro-inflammatory mechanisms against pathogens, albeit at a higher concentration than that required for the anti-parasitic effect. KEY MESSAGES: • The anti-parasitic steroid compound 1o (sc1o) can modulate human immune cells. • Sc1o amplified the potential of M1 macrophages. • Sc1o shifts M2 macrophages to a M1 phenotype. • Dendritic cell differentiation and activation was ambiguously modulated. • Administration of sc1o could possibly assist the anti-parasitic defence.


Assuntos
Antiparasitários/farmacologia , Células Dendríticas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Esteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Macrófagos/metabolismo
18.
Nat Rev Drug Discov ; 20(1): 64-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199880

RESUMO

Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.


Assuntos
Pesquisa Biomédica/normas , Descoberta de Drogas , Indústria Farmacêutica/normas , Terapia de Alvo Molecular , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Humanos
19.
Biomolecules ; 10(12)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348637

RESUMO

The transcription factor NF-E2 p45-related factor 2 (Nrf2) is an established master regulator of the anti-oxidative and detoxifying cellular response. Thus, a role in inflammatory diseases associated with the generation of large amounts of reactive oxygen species (ROS) seems obvious. In line with this, data obtained in cell culture experiments and preclinical settings have shown that Nrf2 is important in regulating target genes that are necessary to ensure cellular redox balance. Additionally, Nrf2 is involved in the induction of phase II drug metabolizing enzymes, which are important both in degrading and converting drugs into active forms, and into putative carcinogens. Therefore, Nrf2 has also been implicated in tumorigenesis. This must be kept in mind when new therapy approaches are planned for the treatment of sepsis. Therefore, this review highlights the function of Nrf2 in sepsis with a special focus on the translation of rodent-based results into sepsis patients in the intensive care unit (ICU).


Assuntos
Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Sepse/fisiopatologia , Animais , Antioxidantes/metabolismo , Linfócitos B/metabolismo , Carcinogênese , Carcinógenos , Células Dendríticas/metabolismo , Granulócitos/metabolismo , Humanos , Sistema Imunitário , Macrófagos/metabolismo , Monócitos/metabolismo , Estresse Oxidativo , Sepse/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
20.
Front Pharmacol ; 11: 1322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013369

RESUMO

Lichen-forming fungi are symbiotic organisms that synthesize unique natural products with potential for new drug leads. Here, we explored the pharmacological activity of six lichen extracts (Evernia prunastri, Pseudevernia furfuracea, Umbilicaria pustulata, Umbilicaria crustulosa, Flavoparmelia caperata, Platismatia glauca) in the context of cancer and inflammation using a comprehensive set of 11 functional and biochemical in vitro screening assays. We assayed intracellular Ca2+ levels and cell migration. For cancer, we measured tumor cell proliferation, cell cycle distribution and apoptosis, as well as the angiogenesis-associated proliferation of endothelial cells (ECs). Targeting inflammation, we assayed leukocyte adhesion onto ECs, EC adhesion molecule expression, as well as nitric oxide production and prostaglandin (PG)E2 synthesis in leukocytes. Remarkably, none of the lichen extracts showed any detrimental influence on the viability of ECs. We showed for the first time that extracts of F. caperata induce Ca2+ signaling. Furthermore, extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca reduced cell migration. Interestingly, F. caperata extracts strongly decreased tumor cell survival. The proliferation of ECs was significantly reduced by E. prunastri, P. furfuracea, and F. caperata extracts. The extracts did not inhibit the activity of inflammatory processes in ECs. However, the pro-inflammatory activation of leukocytes was inhibited by extracts from E. prunastri, P. furfuracea, F. caperata, and P. glauca. After revealing the potential biological activities of lichen extracts by an array of screening tests, a correlation analysis was performed to evaluate particular roles of abundant lichen secondary metabolites, such as atranorin, physodic acid, and protocetraric acid as well as usnic acid in various combinations. Overall, some of the lichen extracts tested in this study exhibit significant pharmacological activity in the context of inflammation and/or cancer, indicating that the group lichen-forming fungi includes promising members for further testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA