Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(9): e3002830, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325819

RESUMO

Understanding perturbations in circulating lipid levels that often occur years or decades before clinical symptoms may enhance our understanding of disease mechanisms and provide novel intervention opportunities. Here, we assessed if polygenic scores (PGSs) for complex traits could detect lipid dysfunctions related to the traits and provide new biological insights. We constructed genome-wide PGSs (approximately 1 million genetic variants) for 50 complex traits in 7,169 Finnish individuals with routine clinical lipid profiles and lipidomics measurements (179 lipid species). We identified 678 associations (P < 9.0 × 10-5) involving 26 traits and 142 lipids. Most of these associations were also validated with the actual phenotype measurements where available (89.5% of 181 associations where the trait was available), suggesting that these associations represent early signs of physiological changes of the traits. We detected many known relationships (e.g., PGS for body mass index (BMI) and lysophospholipids, PGS for type 2 diabetes and triacyglycerols) and those that suggested potential target for prevention strategies (e.g., PGS for venous thromboembolism and arachidonic acid). We also found association of PGS for favorable adiposity with increased sphingomyelins levels, suggesting a probable role of sphingomyelins in increased risk for certain disease, e.g., venous thromboembolism as reported previously, in favorable adiposity despite its favorable metabolic effect. Altogether, our study provides a comprehensive characterization of lipidomic alterations in genetic predisposition for a wide range of complex traits. The study also demonstrates potential of PGSs for complex traits to capture early, presymptomatic lipid alterations, highlighting its utility in understanding disease mechanisms and early disease detection.

2.
Nat Genet ; 53(5): 663-671, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888908

RESUMO

Genetic association results are often interpreted with the assumption that study participation does not affect downstream analyses. Understanding the genetic basis of participation bias is challenging since it requires the genotypes of unseen individuals. Here we demonstrate that it is possible to estimate comparative biases by performing a genome-wide association study contrasting one subgroup versus another. For example, we showed that sex exhibits artifactual autosomal heritability in the presence of sex-differential participation bias. By performing a genome-wide association study of sex in approximately 3.3 million males and females, we identified over 158 autosomal loci spuriously associated with sex and highlighted complex traits underpinning differences in study participation between the sexes. For example, the body mass index-increasing allele at FTO was observed at higher frequency in males compared to females (odds ratio = 1.02, P = 4.4 × 10-36). Finally, we demonstrated how these biases can potentially lead to incorrect inferences in downstream analyses and propose a conceptual framework for addressing such biases. Our findings highlight a new challenge that genetic studies may face as sample sizes continue to grow.


Assuntos
Viés , Caracteres Sexuais , Adulto , Artefatos , Bancos de Espécimes Biológicos , Cromossomos Humanos/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Tamanho da Amostra , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA