Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Protein J ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794304

RESUMO

Efficiently cleaved HIV-1 Envs are the closest mimics of functional Envs as they specifically expose only bNAb (broadly neutralizing antibody) epitopes and not non-neutralizing ones, making them suitable for developing vaccine immunogens. We have previously identified several efficiently cleaved Envs from clades A, B, C and B/C. We also described that truncation of the CT (C-terminal tail) of a subset of these Envs, but not others, impairs their ectodomain conformation/antigenicity on the cell surface in a CT conserved hydrophilic domain (CHD) or Kennedy epitope (KE)-dependent manner. Here, we report that those Envs (4 - 2.J41 and JRCSF), whose native-like ectodomain conformation/antigenicity on the cell surface is disrupted upon CT truncation, but not other Envs like JRFL, whose CT truncation does not have an effect on ectodomain integrity on the cell surface, are also defective in retrograde transport from early to late endosomes. Restoration of the CHD/KE in the CT of these Envs restores wild-type levels of distribution between early and late endosomes. In the presence of retrograde transport inhibitor Retro 2, cell surface expression of 4 - 2.J41 and JRCSF Envs increases [as does in the presence of Rab7a DN and Rab7b DN (DN: dominant negative)] but particle formation decreases for 4 - 2.J41 and JRCSF Env pseudotyped viruses. Our results show for the first time a correlation between CT-dependent, CHD/KE regulated retrograde transport and cell surface expression/viral particle formation of these efficiently cleaved Envs. Based on our results we hypothesize that a subset of these efficiently cleaved Envs use a CT-dependent, CHD/KE-mediated mechanism for assembly and release from late endosomes.

3.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508467

RESUMO

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , Camundongos Transgênicos , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
4.
Protein J ; 41(4-5): 457-467, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36048314

RESUMO

The newly emerging SARS-CoV-2 variants are potential threat and posing new challenges for medical intervention due to high transmissibility and escaping neutralizing antibody (NAb) responses. Many of these variants have mutations in the receptor binding domain (RBD) of SARS-CoV-2 spike protein that interacts with the host cell receptor. Rapid mutation in the RBD through natural selection to improve affinity for host receptor and antibody pressure from vaccinated or infected individual will greatly impact the presently adopted strategies for developing interventions. Understanding the nature of mutations and how they impact the biophysical, biochemical and immunological properties of the RBD will help immensely to improve the intervention strategies. To understand the impact of mutation on the protease sensitivity, thermal stability, affinity for the receptor and immune response, we prepared several mutants of soluble RBD that belong to the variants of concern (VoCs) and interest (VoIs) and characterize them. Our results show that the mutations do not impact the overall structure of the RBD. However, the mutants showed increase in the thermal melting point, few mutants were more sensitive to protease degradation, most of them have enhanced affinity for ACE2 and some of them induced better immune response compared to the parental RBD.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação , Peptídeo Hidrolases , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
5.
ACS Infect Dis ; 8(10): 2119-2132, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36129193

RESUMO

The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Células HEK293 , Humanos , Interleucina-17 , Interleucina-4 , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
6.
Int J Biol Macromol ; 217: 19-26, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35817240

RESUMO

Dengue virus is transmitted by Aedes mosquitoes and dengue is endemic in many regions of the world. Severe dengue results in complications that may lead to death. Although some vaccine candidates are in clinical trials and one vaccine Dengvaxia, with restricted efficacy, is available, there are currently no specific therapies to completely prevent or treat dengue. The dengue virus structural protein E (envelope) exists as a head-to-tail dimer on mature virus, is targeted by broadly neutralizing antibodies and is suitable for developing vaccine immunogens. Here, we have used a redesigned dengue prME expression construct and immunoaffinity chromatography with conformational/quaternary antibody A11 to purify soluble DENV4 sE(A259C) (E ectodomain) dimers from mammalian expression system to ~99 % purity. These dimers retain glycosylation reported for native DENV E, display the three major broadly neutralizing antibody epitopes, and form well-ordered structure. This strategy can be used for developing subunit vaccine candidates against dengue and other flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue/prevenção & controle , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas do Envelope Viral/metabolismo
7.
Nat Microbiol ; 7(7): 974-985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681012

RESUMO

BBV152 is a whole-virion inactivated vaccine based on the Asp614Gly variant. BBV152 is the first alum-imidazoquinolin-adjuvanted vaccine authorized for use in large populations. Here we characterized the magnitude, quality and persistence of cellular and humoral memory responses up to 6 months post vaccination. We report that the magnitude of vaccine-induced spike and nucleoprotein antibodies was comparable with that produced after infection. Receptor binding domain-specific antibodies declined against variants in the order of Alpha (B.1.1.7; 3-fold), Delta (B.1.617.2; 7-fold) and Beta (B.1.351; 10-fold). However, pseudovirus neutralizing antibodies declined up to 2-fold against the Delta followed by the Beta variant (1.7-fold). Vaccine-induced memory B cells were also affected by the Delta and Beta variants. The SARS-CoV-2-specific multicytokine-expressing CD4+ T cells were found in ~85% of vaccinated individuals. Only a ~1.3-fold reduction in efficacy was observed in CD4+ T cells against the Beta variant. We found that antigen-specific CD4+ T cells were present in the central memory compartment and persisted for at least up to 6 months post vaccination. Vaccine-induced CD8+ T cells were detected in ~50% of individuals. Importantly, the vaccine was capable of inducing follicular T helper cells that exhibited B-cell help potential. These findings show that inactivated vaccine BBV152 induces robust immune memory to SARS-CoV-2 and variants of concern that persists for at least 6 months after vaccination.


Assuntos
COVID-19 , Vacinas Virais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Memória Imunológica , SARS-CoV-2 , Vacinas de Produtos Inativados , Vírion
8.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469951

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Camundongos , Pandemias/prevenção & controle , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
9.
Travel Med Infect Dis ; 44: 102168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34563686

RESUMO

Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.


Assuntos
Artrite , Febre de Chikungunya , Vírus Chikungunya , Antivirais/uso terapêutico , Artralgia , Artrite/epidemiologia , Artrite/etiologia , Febre de Chikungunya/complicações , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/terapia , Humanos
10.
Appl Microbiol Biotechnol ; 105(16-17): 6315-6332, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423407

RESUMO

The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.


Assuntos
COVID-19 , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunização Passiva , Imunoterapia , SARS-CoV-2
11.
Ther Adv Vaccines Immunother ; 8: 2515135520957763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103053

RESUMO

The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.

12.
J Biol Chem ; 295(36): 12814-12821, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32727845

RESUMO

There is a desperate need for safe and effective vaccines, therapies, and diagnostics for SARS- coronavirus 2 (CoV-2), the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Herein, we use this technology to search for antibodies targeting the receptor-binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semisynthetic phage library against RBD, leading to the identification of a high-affinity single-chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane-bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin-converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.


Assuntos
Afinidade de Anticorpos , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Anticorpos de Cadeia Única/química , Glicoproteína da Espícula de Coronavírus/química
13.
Appl Microbiol Biotechnol ; 104(8): 3209-3228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076776

RESUMO

Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Antivirais/uso terapêutico , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/terapia , Imunoterapia , Aedes/virologia , Animais , Febre de Chikungunya/imunologia , Vírus Chikungunya/genética , Vírus Chikungunya/patogenicidade , Ensaios Clínicos como Assunto , Variação Genética , Humanos , Mosquitos Vetores/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
14.
Appl Biochem Biotechnol ; 187(3): 1011-1027, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30151637

RESUMO

Recently conducted human phase- I trials showed protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). The V3 region of the HIV-1 envelope is highly conserved as it is the co-receptor binding site, and is highly immunogenic. Recombinant single-chain antibody fragments (scFvs) can serve as potential tools for construction of chimeric/bispecific antibodies that can target different epitopes on the HIV-1 envelope. Previously, we have constructed a V3 specific human scFv phage recombinant library by a combinational approach of Epstein-Barr virus (EBV) transformation and antigen (V3) preselection, using peripheral blood mononuclear cells (PBMCs), from a subtype C HIV-1 infected antiretroviral naive donor. In the present study, by biopanning this recombinant scFv phage library with V3B (subtype B) and V3C (subtype C) peptides, we identified unique cross reactive anti-V3 scFv monoclonals. These scFvs demonstrated cross-neutralizing activity when tested against subtype A, subtype B, and subtype C viruses. Further, molecular modeling of the anti-V3 scFvs with V3C and V3B peptides predicted their sites of interaction with the scFvs, providing insights for future immunogen design studies. A large collection of such monoclonal antibody fragments with diverse epitope specificities can be useful immunotherapeutic reagents along with antiretroviral drugs to prevent HIV-1 infection and disease progression.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Reações Cruzadas , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Antígenos Virais/química , Proteína gp120 do Envelope de HIV/química , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/isolamento & purificação
15.
IUBMB Life ; 70(6): 563-573, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29638041

RESUMO

Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of ß3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through ß3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos Brancos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ramnose/farmacologia , Células 3T3-L1 , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Animais , Camundongos
16.
Nutrition ; 50: 82-90, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547798

RESUMO

OBJECTIVE: The aim of this study was to explore the browning and antioxidative effects of magnolol in 3T3-L1 adipocytes, as recruitment of beige-like adipocytes (browning) by natural compounds is being considered as a promising strategy to fight against obesity. METHODS: Magnolol-induced browning effect was evaluated by determining the expression levels of specific marker genes and proteins using real-time polymerase chain reaction and immunoblotting, respectively. Induction of thermogenesis and suppression of oxidative stress in 3T3-L1 adipocytes were further validated by immunofluorescence. RESULTS: Magnolol significantly enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cd137, Prdm16, Cidea, and Tbx1) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of the AMPK, PPARγ, and protein kinase A (PKA) pathways. In addition, magnolol up-regulated key fatty acid oxidation and lipolytic markers (CPT1, ACSL1, SIRT1, and PLIN) and down-regulated lipogenic markers (FAS and SREBP1). Magnolol also reduced the production and release of reactive oxygen species. CONCLUSION: The current data suggest possible roles for magnolol in browning of white adipocytes, augmentation of lipolysis, and thermogenesis, as well as repression of oxidative stress and lipogenesis. Thus, magnolol may be explored as a potentially promising therapeutic agent for the prevention of obesity and other metabolic disorders.


Assuntos
Adipócitos/metabolismo , Antioxidantes/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Células 3T3-L1/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Técnicas de Cultura de Células , Proteínas de Ligação a DNA/metabolismo , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Proteína Desacopladora 1/metabolismo
17.
Biochimie ; 146: 97-104, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29217172

RESUMO

Browning of white adipocytes (beiging) is an attractive therapeutic strategy against obesity and its associated metabolic complications. Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have anti-obesity effects. Here, we report that nobiletin exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and amelioration of stress in adipocytes. Nobiletin-induced beiging was investigated by determining expression levels of beige-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Nobiletin treatment rapidly elevated the expression levels of beige-specific genes such as Cd137, Cidea, Tbx1, and Tmem26. Further, nobiletin enhanced expression of the key transcription factors C/EBPß, PPARδ, and PPARα, which are responsible for remodeling of white adipocytes. Nobiletin also strikingly activated HIB1B brown adipocytes and induced mitochondrial biogenesis in 3T3-L1 white adipocytes. In addition, nobiletin altered the expression of several lipid metabolism-related proteins such as ACOX1, CPT1, FAS, p-PLIN, SREBP and SIRT1. Moreover, nobiletin ameliorated stress in adipocytes by inhibiting expression levels of key stress molecules such as JNK and c-JUN. Nobiletin-induced browning could be mediated by tight regulation of kinases, as nobiletin induced PKA and p-AMPK at the protein expression level, and inhibition of PKA and p-AMPK by H-89 and dorsomorphin, respectively, abolished expression of the thermogenic markers PGC-1α and UCP1. Taken together, our findings suggest that nobiletin plays a modulatory role in adipocytes via induction of browning in 3T3-L1 white adipocytes and activation of HIB1B brown adipocytes combined with amelioration of stress in adipocytes, thereby exhibiting therapeutic potential against obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Flavonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Fosfoproteínas/metabolismo
18.
IUBMB Life ; 69(7): 510-521, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444942

RESUMO

Our previous study demonstrated that thiodigalactoside (TDG) ameliorates obesity by targeted inhibition of galectin-1 (GAL1). Here, for the first time, we report the unexpected role of GAL1 and ATG5 inhibition by TDG in lipid metabolism. Core thermogenic marker proteins and genes were highly induced in white adipose tissue (WAT) of rats fed a high fat diet (HFD) and TDG, resulting in the significant development of brown fat-like adipocytes in inguinal WAT. TDG treatment reduced weight gain and fat mass as well as activated brown adipose tissue (BAT) in HFD-fed rats. TDG also reduced protein levels of LC3-II and increased protein levels of P62, suggesting its possible role in suppression of autophagy. Combined inhibition of GAL1 and ATG5 by TDG treatment protected rats against both HFD-induced adipogenesis as well as lipogenesis, as evidenced by suppression of CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma and fatty acid synthase. In conclusion, the present findings suggest that TDG plays a role in browning and lipid catabolism by combined inhibition of GAL1 and ATG5 and thus may have potential therapeutic implications in the regulation of energy homeostasis via its action in WAT. © 2017 IUBMB Life, 69(7):510-521, 2017.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Galectina 1/metabolismo , Obesidade/tratamento farmacológico , Tiogalactosídeos/farmacologia , Adipócitos Marrons/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Obesidade/etiologia , Obesidade/patologia , Ratos Sprague-Dawley
19.
Sci Rep ; 7: 45163, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332627

RESUMO

More than 50% of HIV-1 infection globally is caused by subtype_C viruses. Majority of the broadly neutralizing antibodies (bnAbs) targeting HIV-1 have been isolated from non-subtype_C infected donors. Mapping the epitope specificities of bnAbs provides useful information for vaccine design. Recombinant antibody technology enables generation of a large repertoire of monoclonals with diverse specificities. We constructed a phage recombinant single chain variable fragment (scFv) library with a diversity of 7.8 × 108 clones, using a novel strategy of pooling peripheral blood mononuclear cells (PBMCs) of six select HIV-1 chronically infected Indian donors whose plasma antibodies exhibited potent cross neutralization efficiency. The library was panned and screened by phage ELISA using trimeric recombinant proteins to identify viral envelope specific clones. Three scFv monoclonals D11, C11 and 1F6 selected from the library cross neutralized subtypes A, B and C viruses at concentrations ranging from 0.09 µg/mL to 100 µg/mL. The D11 and 1F6 scFvs competed with mAbs b12 and VRC01 demonstrating CD4bs specificity, while C11 demonstrated N332 specificity. This is the first study to identify cross neutralizing scFv monoclonals with CD4bs and N332 glycan specificities from India. Cross neutralizing anti-HIV-1 human scFv monoclonals can be potential candidates for passive immunotherapy and for guiding immunogen design.


Assuntos
Sítios de Ligação/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos , Mapeamento de Epitopos , Anticorpos Anti-HIV/genética , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Testes de Neutralização , Biblioteca de Peptídeos , Ligação Proteica/imunologia , Anticorpos de Cadeia Única/genética
20.
Mol Cell Biochem ; 416(1-2): 131-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27067870

RESUMO

Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.


Assuntos
Adipócitos/metabolismo , Antígenos de Diferenciação/biossíntese , Canabidiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Animais , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Camundongos , Termogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA