Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Toxicol Mech Methods ; 31(4): 293-307, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33588685

RESUMO

Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.


Assuntos
Contramedidas Médicas , Animais , Substâncias para a Guerra Química/toxicidade , Humanos , Pulmão/efeitos dos fármacos , Modelos Animais , Fosgênio/toxicidade
2.
Toxicol Mech Methods ; 29(8): 604-615, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31237465

RESUMO

Phosgene is classified as a chemical warfare agent, yet data on its short-duration high concentration toxicity in a nose-only exposure rat model is sparse and inconsistent. Hence, an exposure system for short-term/high concentration exposure was developed and characterized. Herein, we report the median lethal concentration (LC50) for a 10-min nasal exposure of phosgene in a 24-h rat survival model. Male Wistar rats (Envigo) weighing 180-210 g on the day of exposure, were exposed to phosgene gas via nose-only inhalation using a system specifically designed to allow the simultaneous exposure and quantification of phosgene. After 24 h, the surviving rats were euthanized, the lung/body mass ratio determined, and lung tissues analyzed for histopathology. Increased terminal airway edema in the lungs located primarily at the alveoli (resulting in an increased lung/body mass ratio) coincided with the observed mortality. An LC50 value of 129.2 mg/m3 for a 10-min exposure was determined. Furthermore, in agreement with other highly toxic compounds, this study reveals a LC50 concentration value supportive of a nonlinear toxic load model, where the toxic load exponent is >1 (ne = 1.17). Thus, in line with other chemical warfare agents, phosgene toxicity is predicted to be more severe with short-duration, high-concentration exposures than long-duration, low-concentration exposures. This model is anticipated to be refined and developed to screen novel therapeutics against relevant short-term high concentration phosgene exposures expected from a terrorist attack, battlefield deployment, or industrial accident.


Assuntos
Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Fosgênio/toxicidade , Edema Pulmonar/induzido quimicamente , Animais , Relação Dose-Resposta a Droga , Exposição por Inalação/análise , Dose Letal Mediana , Pulmão/patologia , Masculino , Edema Pulmonar/patologia , Ratos Wistar , Análise de Sobrevida , Fatores de Tempo
3.
J Am Coll Cardiol ; 70(12): 1479-1492, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28911512

RESUMO

BACKGROUND: Although early reperfusion is the most desirable intervention after ischemic myocardial insult, it may add to damage through oxidative stress. OBJECTIVES: This study investigated the cardioprotective effects of a single intravenous dose of heat shock protein-72 (HSP72) coupled to a single-chain variable fragment (Fv) of monoclonal antibody 3E10 (3E10Fv) in a rabbit ischemia-reperfusion model. The Fv facilitates rapid transport of HSP72 into cells, even with intact membranes. METHODS: A left coronary artery occlusion (40 min) reperfusion (3 h) model was used in 31 rabbits. Of these, 12 rabbits received the fusion protein (Fv-HSP72) intravenously. The remaining 19 control rabbits received a molar equivalent of 3E10Fv alone (n = 6), HSP72 alone (n = 6), or phosphate-buffered saline (n = 7). Serial echocardiographic examinations were performed to assess left ventricular function before and after reperfusion. Micro-single-photon emission computed tomography imaging of 99mTc-labeled annexin-V was performed with micro-computed tomography scanning to characterize apoptotic damage in vivo, followed by gamma counting of the excised myocardial specimens to quantify cell death. Histopathological characterization of the myocardial tissue and sequential cardiac troponin I measurements were also undertaken. RESULTS: Myocardial annexin-V uptake was 43% lower in the area at risk (p = 0.0003) in Fv-HSP72-treated rabbits compared with control animals receiving HSP72 or 3E10Fv alone. During reperfusion, troponin I release was 42% lower and the echocardiographic left ventricular ejection fraction 27% higher in the Fv-HSP72-treated group compared with control animals. Histopathological analyses confirmed penetration of 3E10Fv-containing molecules into cardiomyocytes in vivo, and treatment with Fv-HSP72 showed fewer apoptotic nuclei compared with control rabbits. CONCLUSIONS: Single-dose administration of Fv-HSP72 fusion protein at the time of reperfusion reduced myocardial apoptosis by almost one-half and improved left ventricular functional recovery after myocardial ischemia-reperfusion injury in rabbits. It might have potential to serve as an adjunct to early reperfusion in the management of myocardial infarction.


Assuntos
Proteínas de Choque Térmico HSP72/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Anticorpos de Cadeia Única/administração & dosagem , Animais , Modelos Animais de Doenças , Ecocardiografia , Masculino , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos
4.
Oncotarget ; 8(10): 16275-16292, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28187445

RESUMO

Necrosis is induced by ischemic conditions within the core of many solid tumors. Using fluorescent fusion proteins, we provide in vivo evidence of histone trafficking among cancer cells in implanted tumors. In particular, the most abundant H1 isoform (H1.2) was found to be transported from necrotic tumor cells into surrounding viable cells where histones are selectively taken up by energy-dependent endocytosis. We propose that intercellular histone trafficking could function as a target for drug delivery. This concept was validated using an anti-histone antibody that was co-internalized with histones from dead cells into viable ones surrounding the necrotic regions of a tumor, where some of the most chemoresistant cells reside. These findings demonstrate that cellular translocation of conjugated drugs using anti-histone antibodies is a promising strategy for targeted drug delivery to chemoresistant tumors.


Assuntos
Endocitose , Histonas/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetinae , Cricetulus , Humanos , Necrose , Transporte Proteico
5.
Ann N Y Acad Sci ; 1374(1): 78-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27152638

RESUMO

Heat shock protein 72 (HSP72) is perhaps the most important member of the HSP70 family of proteins, given that it is induced in a wide variety of tissues and cells to combat stress, particularly oxidative stress. Here, we review independent observations of the critical role this protein plays as a pulmonary cytoprotectant and discuss the merits of developing HSP72 as a therapeutic for rapid delivery to cells and tissues after a traumatic event. We also discuss the fusion of HSP72 to a cell-penetrating single-chain Fv antibody fragment derived from mAb 3E10, referred to as Fv-HSP70. This fusion construct has been validated in vivo in a cerebral infarction model and is currently in testing as a clinical therapeutic to treat ischemic events and as a fieldable medical countermeasure to treat inhalation of toxicants caused by terrorist actions or industrial accidents.


Assuntos
Citoproteção , Proteínas de Choque Térmico HSP72/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Terapia de Alvo Molecular , Animais , Proteínas de Choque Térmico HSP72/genética , Humanos , Modelos Biológicos , Estresse Fisiológico
6.
Sci Rep ; 5: 15756, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510887

RESUMO

The use of rodent models to evaluate efficacy during testing is accompanied by significant economic and regulatory hurdles which compound the costs of screening for promising drug candidates. Vasopermeation Enhancement Agents (VEAs) are a new class of biologics that are designed to increase the uptake of cancer therapeutics at the tumor site by modifying vascular permeability in the tumor to increase the therapeutic index of co-administered drugs. To evaluate the efficacy of a panel of VEA clinical candidates, we compared the rodent Miles assay to an equivalent assay in the ex ovo chicken embryo model. Both model systems identified the same candidate (PVL 10) as the most active promoter of vasopermeation in non-tumor tissues. An ex ovo chicken embryo system was utilized to test each candidate VEA in two human tumor models at a range of concentrations. Vasopermeation activity due to VEA was dependent on tumor type, with HEp3 tumors displaying higher levels of vasopermeation than MDA-MB-435. One candidate (PVL 10) proved optimal for HEp3 tumors and another (PVL 2) for MDA-MB-435. The use of the ex ovo chicken embryo model provides a rapid and less costly alternative to the use of rodent models for preclinical screening of drug candidates.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Permeabilidade Capilar , Membrana Corioalantoide/metabolismo , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Camundongos
7.
PLoS One ; 7(3): e33760, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479438

RESUMO

The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors.


Assuntos
Permeabilidade Capilar , Sistemas de Liberação de Medicamentos , Animais , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/patologia , Doxorrubicina/administração & dosagem , Azul Evans , Humanos , Interleucina-2/farmacologia , Microscopia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Imagem com Lapso de Tempo , Transplante Heterólogo/patologia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(25): 2583-94, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21816690

RESUMO

The popularity of Protein G for the purification of antibodies has given rise to an entire industry that supplies scientists with research grade immunoreagents; however, many times the supplied product is contaminated with antigens bound to the antibody's complementarity-determining regions (CDRs). These "hitchhikers" are a category of host cell proteins that are elusive to detect due to their interaction with the antibody in the final product and yet their impact on an experiment or an entire field of study can be far reaching. In an earlier work, the role of hitchhikers on a human anti-histone antibody destined for clinical usage was explored and a stringent purification scheme developed. Here we use a murine monoclonal, which reflects the type of commercial antibody usually purchased for research. We evaluate three purification schemes: a traditional approach using a one-step, low pH elution buffer (pH 2.5); a gentler approach using a pH gradient elution scheme (pH 7 down to pH 2.5); and finally, a more stringent purification patterned on our earlier published method that uses a quaternary amine guard column and a high salt wash during antibody immobilization on the Protein G. We stress that the stringent purification incorporates the pH gradient scheme and is gentler than the low-pH approach. The resulting product from all three purifications is directly compared for binding potency, histone content (using an ELISA based assay) and residual DNA (using quantitative PCR). The results demonstrate that the first two methods are inadequate for hitchhiker removal. The traditional one-step, low pH approach produces a single elution peak containing histone contaminated antibody with picogram quantities of residual DNA, however, the trailing end of the same peak is loaded with antibody complexed to nanogram amounts of DNA, in some cases, over 100 ng. The pH gradient approach provided antibodies accompanied by only picograms of residual DNA and, on average, 1 out of every 10-20 CDRs occupied by a histone antigen. The more stringent approach, using the salt wash prior to elution with the pH gradient, has an average of 1 out of every 75 CDRs contaminated with a histone while the majority of the residual DNA is captured by the quaternary amine column placed in front of the Protein G. The consequences of these contaminants is illustrated by showing how they manifest themselves in unusual antibody potency values ranging from 558% for antibody bound to histone hitchhikers down to 15% for antibody contaminated with DNA hitchhikers. Those samples purified by the recommended stringent approach show potency values between 90 and 101%. Most importantly, we repeatedly demonstrate in a simulated chromatin immunoprecipitation (ChIP) assay the ability to precipitate clean plasmid DNA with histone contaminated antibody that had been purified using the traditional one-step, low pH elution approach. Expectedly, those antibodies stringently purified and showing 100% binding potency were unable to precipitate DNA in the absence of histone hitchhikers.


Assuntos
Anticorpos/química , Cromatografia de Afinidade/métodos , Contaminação de Medicamentos , Animais , Anticorpos/isolamento & purificação , Antígenos/química , Proteínas de Bactérias , Imunoprecipitação da Cromatina , Regiões Determinantes de Complementaridade , DNA/isolamento & purificação , Cabras , Histonas/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Imunoensaio/normas , Camundongos , Compostos de Amônio Quaternário , Coelhos
9.
J Nucl Med ; 50(7): 1178-86, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525454

RESUMO

UNLABELLED: A key limitation in developing radiotherapeutic proteins is the expense of manufacturing the drug in small batches using traditional reaction vessels. Removing limitations on the quantity of protein labeled at any one time significantly decreases the cost of production, and nowhere is the need for cost-effective radiotherapeutics more acute than in the treatment of cancer. METHODS: We describe a novel method that can rapidly radiolabel, theoretically, unlimited amounts of protein, without causing significant damage to binding potency or structural integrity. Our process controls the reaction rate for the isotope and reactants as they simultaneously flow through a reaction tube. RESULTS: We have demonstrated proof of principle by labeling nearly a gram of antibody with 481 GBq (13 Ci) of (131)I during a single 30-min reaction run. CONCLUSION: Simple to construct, our system is already used to manufacture a radiolabeled antibody, both in the United States and in India, as part of clinical trials to treat glioblastoma multiforme. Modified, this system may be also applicable for nonradioactive labeling.


Assuntos
Anticorpos Monoclonais/química , Composição de Medicamentos/métodos , Análise de Injeção de Fluxo/instrumentação , Marcação por Isótopo/instrumentação , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Comércio , Desenho de Equipamento , Análise de Falha de Equipamento , Sistemas On-Line
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(14-15): 1543-52, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19386558

RESUMO

Antibodies that target common cellular structures may have a propensity to bind those very same antigens as they become exposed in dead or dying cells during production in a bioreactor. Those tendencies can be accentuated if the targeted epitope is highly conserved across species. While attention to contaminants such as endotoxin, viral particles, cellular DNA and even prions has grown coincident with the emergence of the monoclonal antibody industry, it is surprising how little attention has been focused on hitchhiker antigens that may co-elute while bound to the supposedly pure antibody. In this case study, we will focus on anti-histone antibodies and the measures we have taken to eliminate stowaways, such as histone-DNA complexes. These simple measures include the addition of a quartenary amine guard column to the protein A, adjusting the ionic strength of the cell culture supernatant to 400 mM sodium chloride, and establishing a mobile phase gradient from 400 mM to 2M during protein A chromatography. Initially adjusting the cell culture to 600 mM can compromise the quartenary amine guard column. Also, we demonstrate the applicability of these techniques in both the R&D lab and the manufacturing plant, particularly in improving the apparent potency of antibodies destined for the clinic. Given the prominence of anti-histone antibodies in chromatin immunoprecipitation (ChIP), the implications of hitchhiker antigens interferring with the results of an experiment are far-reaching, indeed, we detect them in some popularly used antibodies. Moreover, a wide variety of monoclonals that may target antigens expressed by the producer cell line may face similar problems, resulting in a decreased production yield, as well as a diminished apparent binding potency.


Assuntos
Anticorpos/isolamento & purificação , Antígenos/imunologia , Cromatografia de Afinidade/métodos , Histonas/imunologia , Anticorpos/imunologia , DNA/imunologia , Humanos
11.
Biochemistry ; 48(1): 164-72, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19072710

RESUMO

Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their approximately 100-residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1 degrees to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J. Biol. Chem. 279, 8701-8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms or recombinant H1 degrees CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo.


Assuntos
Aminoácidos/química , Cromatina/química , Histonas/química , Sequência de Aminoácidos , Animais , Galinhas , Histonas/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleossomos/química , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Biochem Cell Biol ; 84(4): 589-604, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16936831

RESUMO

Although they are one of the oldest family of proteins known (first described in 1884 by Kossel), histones continue to surprise researchers with their ever expanding roles in biology. In the past 25 years, the view of core histone octamers as a simple spool around which DNA in the nucleus is wound and linker histones as mere fasteners clipping it all together has transformed into the realization that histones play a vital role in transcriptional regulation. Through post-translational modifications, histones control the accessibility of transcription factors and a host of other proteins to multiple, conceivably thousands of, genes at once. While researchers have spent decades deciphering the role of histones in the overall structure of chromatin, it might surprise some to find that an entirely separate faction of scientists have focused on the role of histones beyond the confines of the nuclear envelope. In the past decade, there has been an accumulation of observations that suggest that histones can be found at the mitochondrion during the onset of apoptotic signaling and even at the cell surface, acting as a receptor for bacterial and viral proteins. More provocatively, immunologists are becoming convinced that they can also be found in the lumen of several tissues, acting as antimicrobial agents--critical components of an ancient innate immune system. Perhaps nowhere is this observation as dramatic as in the ability of neutrophils to entrap bacterial pathogens by casting out "nets" of DNA and histones that not only act as a physical barrier, but also display bactericidal activity. As our views regarding the role of histones inside and outside the cell evolve, some have begun to develop therapies that either utilize or target histones in the fight against cancer, microbial infection, and autoimmune disease. It is our goal here to begin the process of merging the dichotomous lives of histones both within and without the nuclear membrane.


Assuntos
Núcleo Celular/metabolismo , Histonas/fisiologia , Imunidade Inata/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Animais , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética
13.
Biochemistry ; 44(21): 7871-8, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15910001

RESUMO

The apoptotic nuclease, DNA fragmentation factor (DFF40/CAD), is primarily responsible for internucleosomal DNA cleavage during the terminal stages of programmed cell death. Previously, we demonstrated that histone H1 greatly stimulates naked DNA cleavage by this nuclease. Here, we investigate the mechanism of this stimulation with native and recombinant mouse and human histone H1 species. Using a series of truncation mutants of recombinant histone H1-0, we demonstrate that the H1 C-terminal domain (CTD) is responsible for activation of DFF40/CAD. We show further that the intact histone H1-0 CTD and certain synthetic CTD fragments bind to DFF40/CAD and confer upon it an increased ability to bind to DNA. Interestingly, we find that each of the six somatic cell histone H1 isoforms, whose CTDs differ significantly in primary sequence but not amino acid composition, equally activate DFF40/CAD. We conclude that the interactions identified here between the histone H1 CTD and DFF40/CAD target and activate linker DNA cleavage during the terminal stages of apoptosis.


Assuntos
Apoptose , DNA/metabolismo , Desoxirribonucleases/metabolismo , Histonas/química , Fragmentos de Peptídeos/química , Proteínas/química , Animais , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Histonas/metabolismo , Humanos , Hidrólise , Camundongos , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Especificidade por Substrato
14.
Dev Biol ; 266(1): 62-75, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14729478

RESUMO

H1 linker histones (H1s) are key regulators of chromatin structure and function. The functions of different H1s during early embryogenesis, and mechanisms regulating their associations with chromatin are largely unknown. The developmental transitions of H1s during oocyte growth and maturation, fertilization and early embryogenesis, and in cloned embryos were examined. Oocyte-specific H1FOO, but not somatic H1s, associated with chromatin in oocytes (growing, GV-stage, and MII-arrested), pronuclei, and polar bodies. H1FOO associated with sperm or somatic cell chromatin within 5 min of intracytoplasmic sperm injection (ICSI) or somatic cell nuclear transfer (SCNT), and completely replaced somatic H1s by 60 min. The switching from somatic H1s to H1FOO following SCNT was developmentally regulated. H1FOO was replaced by somatic H1s during the late two- and four-cell stages. H1FOO association with chromatin can occur in the presence of a nuclear envelope and independently of pronucleus formation, is regulated by factors associated with the spindle, and is likely an active process. All SCNT constructs recapitulated the normal sequence of H1 transitions, indicating that this alone does not signify a high developmental potential. A paucity of all known H1s in two-cell embryos may contribute to precocious gene transcription in fertilized embryos, and the elaboration of somatic cell characteristics in cloned embryos.


Assuntos
Núcleo Celular , Fertilização , Histonas/fisiologia , Injeções de Esperma Intracitoplásmicas , Animais , Desenvolvimento Embrionário e Fetal , Feminino , Imunofluorescência , Camundongos , Oócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA