Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38371318

RESUMO

Autosomal dominant polycystic kidney disease results from the loss of the PKD1 gene product, polycystin 1. Regulatory mechanisms are unresolved, but an apparent G/C sequence bias in the gene is consistent with co-transcriptional R-loop formation. R-loops regulate gene expression and stability, and they form when newly synthesized RNA extensively pairs with the template DNA to displace the non-template strand. In this study, we tested two human PKD1 sequences for co-transcriptional R-loop formation in vitro. We observed RNase H-sensitive R-loop formation in intron 1 and 22 sequences, but only in one transcriptional orientation. Therefore, R-loops may participate in PKD1 expression or stability.

2.
Placenta ; 137: 70-77, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087951

RESUMO

INTRODUCTION: Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS: Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS: ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION: These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.


Assuntos
Hiperandrogenismo , Trofoblastos , Gravidez , Feminino , Animais , Ovinos , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Hiperandrogenismo/metabolismo , Mitocôndrias/metabolismo
3.
Life (Basel) ; 11(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357016

RESUMO

Successful pregnancy requires the establishment of a highly regulated maternal-fetal environment. This is achieved through the harmonious regulation of steroid hormones, which modulate both maternal and fetal physiology, and are critical for pregnancy maintenance. Defects in steroidogenesis and steroid signaling can lead to pregnancy disorders or even fetal loss. The placenta is a multifunctional, transitory organ which develops at the maternal-fetal interface, and supports fetal development through endocrine signaling, the transport of nutrients and gas exchange. The placenta has the ability to adapt to adverse environments, including hormonal variations, trying to support fetal development. However, if placental function is impaired, or its capacity to adapt is exceeded, fetal development will be compromised. The goal of this review is to explore the relevance of androgens and androgen signaling during pregnancy, specifically in placental development and function. Often considered a mere precursor to placental estrogen synthesis, the placenta in fact secretes androgens throughout pregnancy, and not only contains the androgen steroid nuclear receptor, but also non-genomic membrane receptors for androgens, suggesting a role of androgen signaling in placental function. Moreover, a number of pregnancy disorders, including pre-eclampsia, gestational diabetes, intrauterine growth restriction, and polycystic ovarian syndrome, are associated with abnormal androgen levels and androgen signaling. Understanding the role of androgens in the placenta will provide a greater understanding of the pathophysiology of pregnancy disorders associated with androgen elevation and its consequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA