Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 60(8): 4439-4452, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34081167

RESUMO

PURPOSE: This study investigated metabolic benefits of protein hydrolysates from the macroalgae Palmaria palmata, previously shown to inhibit dipeptidylpeptidase-4 (DPP-4) activity in vitro. METHODS: Previously, Alcalase/Flavourzyme-produced P. palmata protein hydrolysate (PPPH) improved glycaemia and insulin production in streptozotocin-induced diabetic mice. Here the PPPH, was compared to alternative Alcalase, bromelain and Promod-derived hydrolysates and an unhydrolysed control. All PPPH's underwent simulated gastrointestinal digestion (SGID) to establish oral bioavailability. PPPH's and their SGID counterparts were tested in pancreatic, clonal BRIN-BD11 cells to assess their insulinotropic effect and associated intracellular mechanisms. PPPH actions on the incretin effect were assessed via measurement of DPP-4 activity, coupled with GLP-1 and GIP release from GLUTag and STC-1 cells, respectively. Acute in vivo effects of Alcalase/Flavourzyme PPPH administration on glucose tolerance and satiety were assessed in overnight-fasted mice. RESULTS: PPPH's (0.02-2.5 mg/ml) elicited varying insulinotropic effects (p < 0.05-0.001). SGID of the unhydrolysed protein control, bromelain and Promod PPPH's retained, or improved, bioactivity regarding insulin secretion, DPP-4 inhibition and GIP release. Insulinotropic effects were retained for all SGID-hydrolysates at higher PPPH concentrations. DPP-4 inhibitory effects were confirmed for all PPPH's and SGID counterparts (p < 0.05-0.001). PPPH's were shown to directly influence the incretin effect via upregulated GLP-1 and GIP (p < 0.01-0.001) secretion in vitro, largely retained after SGID. Alcalase/Flavourzyme PPPH produced the greatest elevation in cAMP (p < 0.001, 1.7-fold), which was fully retained post-SGID. This hydrolysate elicited elevations in intracellular calcium (p < 0.01) and membrane potential (p < 0.001). In acute in vivo settings, Alcalase/Flavourzyme PPPH improved glucose tolerance (p < 0.01-0.001) and satiety (p < 0.05-0.001). CONCLUSION: Bioavailable PPPH peptides may be useful for the management of T2DM and obesity.


Assuntos
Diabetes Mellitus Experimental , Peptídeo 1 Semelhante ao Glucagon , Animais , Glicemia , Polipeptídeo Inibidor Gástrico , Incretinas , Insulina/metabolismo , Camundongos , Hidrolisados de Proteína , Regulação para Cima
2.
Peptides ; 100: 219-228, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412822

RESUMO

Nine structurally modified apelin-13 analogues were assessed for their in vitro and acute in vivo antidiabetic potential. Stability was assessed in mouse plasma and insulinotropic efficacy tested in cultured pancreatic BRIN-BD11 cells and isolated mouse pancreatic islets. Intracellular Ca2+ and cAMP production in BRIN-BD11 cells was determined, as was glucose uptake in 3T3-L1 adipocytes. Acute antihyperglycemic effects of apelin analogues were assessed following i.p. glucose tolerance tests (ipGGT, 18 mmol/kg) in normal and diet-induced-obese (DIO) mice and on food intake in normal mice. Apelin analogues all showed enhanced in vitro stability (up to 5.8-fold, t½â€¯= 12.8 h) in mouse plasma compared to native apelin-13 (t½â€¯= 2.1 h). Compared to glucose controls, stable analogues exhibited enhanced insulinotropic responses from BRIN-BD11 cells (up to 4.7-fold, p < 0.001) and isolated mouse islets (up to 5.3-fold) for 10-7 M apelin-13 amide (versus 7.6-fold for 10-7 M GLP-1). Activation of APJ receptors on BRIN-BD11 cells increased intracellular Ca2+ (up to 3.0-fold, p < 0.001) and cAMP (up to 1.7-fold, p < 0.01). Acute ipGTT showed improved insulinotropic and glucose disposal responses in normal and DIO mice (p < 0.05 and p < 0.01, respectively). Apelin-13 amide and (pGlu)apelin-13 amide were the most effective analogues exhibiting acute, dose-dependent and persistent biological actions. Both analogues stimulated insulin-independent glucose uptake by differentiated adipocytes (2.9-3.3-fold, p < 0.05) and inhibited food intake (26-33%, p < 0.001), up to 180 min in mice, versus saline. In contrast, (Ala13)apelin-13 and (Val13)apelin-13 inhibited insulin secretion, suppressed beta-cell signal transduction and stimulated food intake in mice. Thus, stable analogues of apelin-13 have potential for diabetes/obesity therapy.


Assuntos
Hipoglicemiantes/administração & dosagem , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Obesidade/tratamento farmacológico , Células 3T3-L1 , Animais , Glicemia/efeitos dos fármacos , AMP Cíclico/metabolismo , Polipeptídeo Inibidor Gástrico/química , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Receptores de Glucagon/metabolismo
3.
Acta Diabetol ; 52(3): 461-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25374384

RESUMO

AIMS: Xenin-25 is co-secreted with glucose-dependent insulinotropic polypeptide (GIP) from intestinal K-cells following a meal. Xenin-25 is believed to play a key role in glucose homoeostasis and potentiate the insulinotropic effect of GIP. METHODS: This study investigated the effects of sub-chronic administration of the stable and longer-acting xenin-25 analogue, xenin-25[Lys(13)PAL] (25 nmol/kg), in diabetic mice fed with a high-fat diet. RESULTS: Initial studies confirmed the significant persistent glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05) actions of xenin-25[Lys(13)PAL] compared with native xenin-25. Interestingly, xenin-25 retained significant glucose-lowering activity in GIP receptor knockout mice. Twice-daily intraperitoneal (i.p.) injection of xenin-25[Lys(13)PAL] for 14 days had no significant effect on food intake or body weight in high-fat-fed mice. Non-fasting glucose and insulin levels were also unchanged, but overall glucose levels during an i.p. glucose tolerance and oral nutrient challenge were significantly (p < 0.05) lowered by xenin-25[Lys(13)PAL] treatment. These changes were accompanied by significant improvements in i.p. (p < 0.05) and oral (p < 0.001) nutrient-stimulated insulin concentrations. No appreciable changes in insulin sensitivity were observed between xenin-25[Lys(13)PAL] and saline-treated high-fat mice. However, xenin-25[Lys(13)PAL] treatment restored notable sensitivity to the biological actions of exogenous GIP injection. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were not altered by 14-day twice-daily treatment with xenin-25[Lys(13)PAL]. In contrast, ambulatory activity was significantly (p < 0.05 to p < 0.001) increased during the dark phase in xenin-25[Lys(13)PAL] mice compared with high-fat controls. CONCLUSIONS: These data indicate that sustained administration of a stable analogue of xenin-25 exerts a spectrum of beneficial metabolic effects in high-fat-fed mice.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Neurotensina/administração & dosagem , Acetilação , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Hipoglicemiantes/química , Masculino , Camundongos , Neurotensina/química , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA