Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 172: 105655, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072207

RESUMO

The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequences, including an increased risk of developing Alzheimer's Disease, Parkinson's Disease (PD), chronic traumatic encephalopathy (CTE), and nearly doubling one's risk of suicide. However, the current management of mTBIs in clinical practice and the available treatment options are limited. There exists an unmet need for effective therapy. This review addresses various aspects of mTBIs based on the most up-to-date literature review, with the goal of stimulating translational research to identify new therapeutic targets and improve our understanding of pathogenic mechanisms. First, we provide a summary of mTBI symptomatology and current diagnostic parameters such as the Glasgow Coma Scale (GCS) for classifying mTBIs or concussions, as well as the utility of alternative diagnostic parameters, including imaging techniques like MRI with diffusion tensor imaging (DTI) and serum biomarkers such as S100B, NSE, GFAP, UCH-L1, NFL, and t-tau. Our review highlights several pre-clinical concussion models employed in the study of mTBIs and the underlying cellular mechanisms involved in mTBI-related pathogenesis, including axonal damage, demyelination, inflammation, and oxidative stress. Finally, we examine a selection of new therapeutic targets currently under investigation in pre-clinical models. These targets may hold promise for clinical translation and address the pressing need for more effective treatments for mTBIs.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Imagem de Tensor de Difusão , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas/patologia , Resultado do Tratamento
2.
J Neuroinflammation ; 19(1): 246, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199097

RESUMO

Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Oligodendroglia , Recuperação de Função Fisiológica
3.
Commun Biol ; 5(1): 35, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017668

RESUMO

New research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/-;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.


Assuntos
Cognição/fisiologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Fagocitose/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação Oxidativa , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA