Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Big Data ; 7: 1401981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994120

RESUMO

Tuberculosis (TB) is a chronic and pathogenic disease that leads to life-threatening situations like death. Many people have been affected by TB owing to inaccuracy, late diagnosis, and deficiency of treatment. The early detection of TB is important to protect people from the severity of the disease and its threatening consequences. Traditionally, different manual methods have been used for TB prediction, such as chest X-rays and CT scans. Nevertheless, these approaches are identified as time-consuming and ineffective for achieving optimal results. To resolve this problem, several researchers have focused on TB prediction. Conversely, it results in a lack of accuracy, overfitting of data, and speed. For improving TB prediction, the proposed research employs the Selection Focal Fusion (SFF) block in the You Look Only Once v8 (YOLOv8, Ultralytics software company, Los Angeles, United States) object detection model with attention mechanism through the Kaggle TBX-11k dataset. The YOLOv8 is used for its ability to detect multiple objects in a single pass. However, it struggles with small objects and finds it impossible to perform fine-grained classifications. To evade this problem, the proposed research incorporates the SFF technique to improve detection performance and decrease small object missed detection rates. Correspondingly, the efficacy of the projected mechanism is calculated utilizing various performance metrics such as recall, precision, F1Score, and mean Average Precision (mAP) to estimate the performance of the proposed framework. Furthermore, the comparison of existing models reveals the efficiency of the proposed research. The present research is envisioned to contribute to the medical world and assist radiologists in identifying tuberculosis using the YOLOv8 model to obtain an optimal outcome.

2.
Gene ; 915: 148429, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575098

RESUMO

Bioinformatics is a contemporary interdisciplinary area focused on analyzing the growing number of genome sequences. Gene variants are differences in DNA sequences among individuals within a population. Splice site recognition is a crucial step in the process of gene expression, where the coding sequences of genes are joined together to form mature messenger RNA (mRNA). These genetic variants that disrupt genes are believed to be the primary reason for neuro-developmental disorders like ASD (Autism Spectrum Disorder) is a neuro-developmental disorder that is diagnosed in individuals, families, and society and occurs as the developmental delay in one among the hundred genes that are associated with these disorders. Missense variants, premature stop codons, or deletions alter both the quality and quantity of encoded proteins. Predicting genes within exons and introns presents main challenges, such as dealing with sequencing errors, short reads, incomplete genes, overlapping, and more. Although many traditional techniques have been utilized in creating an exon prediction system, the primary challenge lies in accurately identifying the length and spliced strand location classification of exons in conjunction with introns. From now on, the suggested approach utilizes a Deep Learning algorithm to analyze intricate and extensive genomic datasets. M-LSTM is utilized to categorize three binary combinations (EI as 1, IE as 2, and none as 3) using spliced DNA strands. The M-LSTM system is able to sequence extensive datasets, ensuring that long information can be stored without any impact on the current input or output. This enables it to recognize and address long-term connections and problems with rapidly increasing gradients. The proposed model is compared internally with Naïve Bayes and Random Forest to assess its efficacy. Additionally, the proposed model's performance is forecasted by utilizing probabilistic parameters like recall, F1-score, precision, and accuracy to assess the effectiveness of the proposed system.


Assuntos
Éxons , Íntrons , Sítios de Splice de RNA , Éxons/genética , Humanos , Íntrons/genética , Biologia Computacional/métodos , Splicing de RNA , Transtorno do Espectro Autista/genética , Algoritmos , Aprendizado Profundo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA