Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241721

RESUMO

Microbial infections affect both the human population and animals. The appearance of more and more microbial strains resistant to classical treatments led to the need to develop new treatments. Allium plants are known for their antimicrobial properties due to their high content of thiosulfinates, especially allicin, polyphenols or flavonoids. The hydroalcoholic extracts of six Allium species obtained by cold percolation were analyzed regarding their phytochemical compounds and antimicrobial activity. Among the six extracts, Allium sativum L. and Allium ursinum L. have similar contents of thiosulfinates (approx. 300 µg allicin equivalents/g), and the contents of polyphenols and flavonoids were different between the tested species. The HPLC-DAD method was used to detail the phytochemical composition of species rich in thiosulfinates. A. sativum is richer in allicin (280 µg/g) than A. ursinum (130 µg/g). The antimicrobial activity of A. sativum and A. ursinum extracts against Escherichia coli, Staphylococcus aureus, Candida albicans and Candida parapsilosis can be correlated with the presence of large amounts of thiosulfinates. Both extracts have shown results against Candida species (inhibition zones of 20-35 mm) and against Gram-positive bacteria, Staphylococcus aureus (inhibition zones of 15-25 mm). These results demonstrate the antimicrobial effect of the extracts and suggest their use as an adjuvant treatment for microbial infections.


Assuntos
Allium , Anti-Infecciosos , Alho , Animais , Humanos , Allium/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Alho/química , Staphylococcus aureus , Polifenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia
2.
J Fungi (Basel) ; 8(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736072

RESUMO

Research into the biodeteriorative potential of fungi can serve as an indicator of the condition of heritage items. Biodeterioration of canvas paintings as a result of fungal metabolic activity is understudied with respect to both the species diversity and mechanisms involved. This study brings new evidence for the physiology of fungi biodeteriorative capacity of canvas paintings. Twenty-one fungal isolates were recovered from four oil paintings (The Art Museum, Cluj-Napoca) and one gouache painting (private collection), dating from the 18th to 20th centuries. The species, identified based on the molecular markers Internal Transcribed Spacer (ITS), beta-tubulin (tub2), or translation elongation factor 1 (TEF-1), are common colonisers of canvas paintings or indoor environments (e.g., Penicillium spp., Aspergillus spp., Alternaria spp.). Fungi enzymatic profiles were investigated by means of hydrolysable substrates, included in culture media or in test strips, containing components commonly used in canvas paintings. The pigment solubilisation capacity was assessed in culture media for the primary pigments and studied in relation to the organic acid secretion. Caseinases, amylases, gelatinases, acid phosphatase, N-acetyl-ß-glucosaminidase, naphthol-AS-BI-phosphohydrolase, and ß-glucosidase were found to be the enzymes most likely involved in the processes of substrate colonisation and breakdown of its components. Aureobasidium genus was found to hold the strongest biodeteriorative potential, followed by Cladosporium, Penicillium, Trichoderma, and Aspergillus. Blue pigment solubilisation was detected, occurring as a result of organic acids secretion. Distinct clusters were delineated considering the metabolic activities detected, indicating that fungi specialise in utilisation of certain types of substrates. It was found that both aged and modern artworks are at risk of fungal biodeterioration, due to the enzymatic activities' diversity and intensity, pigment solubilisation capacity or pigment secretion.

3.
Medicina (Kaunas) ; 58(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35629999

RESUMO

Background and Objectives: Previous studies demonstrated antioxidant activities for flaxseed and flaxseed oil. The aim of the present study was to evaluate the prophylactic and therapeutic anti-inflammatory and antioxidant effects of flaxseed ethanol extract in acute experimental inflammation. Materials and Methods: The in vivo anti-inflammatory and antioxidant activity was evaluated on a turpentine-induced acute inflammation (6 mL/kg BW, i.m.) by measuring serum total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB. The experiment was performed on nine groups (n = 5) of male rats: negative control; inflammation; three groups with seven days of flaxseed extract (100%, 50%, 25%) pretreatment followed by inflammation on day eight; three groups of inflammation followed by seven days of treatment with flaxseed extract (100%, 50%, 25%); inflammation followed by seven days of treatment with diclofenac (20 mg/kg BW). Results: Flaxseed extract anti-inflammatory activity was better in the therapeutic plan than in the prophylactic one, and consisted of NO, 3NT, and NF-κB reduction in a dose dependent way. ROS was reduced better in the therapeutic flaxseed extracts administration, and antioxidants were increased by the prophylactic flaxseed extracts administration. Both, ROS and antioxidants were influenced more by the total flaxseed extract, which was also more efficient than diclofenac. Conclusions: flaxseed extract prophylaxis has a useful antioxidant activity by increasing the antioxidants, and flaxseed extract therapy has anti-inflammatory and antioxidant activities by reducing NF-κB, RNS, and ROS.


Assuntos
Linho , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Diclofenaco/uso terapêutico , Linho/química , Humanos , Inflamação/tratamento farmacológico , Masculino , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624757

RESUMO

The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.

5.
Microbiol Spectr ; 10(2): e0271121, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234513

RESUMO

The spatiotemporal variation of several carbapenemase-encoding genes (CRGs) was investigated in the influent and effluent of municipal WWTPs, with or without hospital sewage input. Correlations among gene abundances, bacterial community composition, and wastewater quality parameters were tested to identify possible predictors of CRGs presence. Also, the possible role of wastewaters in mirroring clinical resistance is discussed. The taxonomic groups and gene abundances showed an even distribution among wastewater types, meaning that hospital sewage does not influence the microbial diversity and the CRG pool. The bacterial community was composed mainly of Proteobacteria, Firmicutes, Actinobacteria, Patescibacteria, and Bacteroidetes. Acinetobacter spp. was the most abundant group and had the majority of operational taxonomic units (OTUs) positively correlated with CRGs. This agrees with recent reports on clinical data. The influent samples were dominated by blaKPC, as opposed to effluent, where blaIMP was dominant. Also, blaIMP was the most frequent CRG family observed to correlate with bacterial taxa, especially with the Mycobacterium genus in effluent samples. Bacterial load, blaNDM, blaKPC, and blaOXA-48 abundances were positively correlated with BOD5, TSS, HEM, Cr, Cu, and Fe concentrations in wastewaters. When influent gene abundance values were converted into population equivalent (PE) data, the highest copies/1 PE were identified for blaKPC and blaOXA-48, agreeing with previous studies regarding clinical isolates. Both hospital and non-hospital-type samples followed a similar temporal trend of CRG incidence, but with differences among gene groups. Colder seasons favored the presence of blaNDM, blaKPC and blaOXA-48, whereas warmer temperatures show increased PE values for blaVIM and blaIMP. IMPORTANCE Wastewater-based epidemiology has recently been recognized as a valuable, cost-effective tool for antimicrobial resistance surveillance. It can help gain insights into the characteristics and distribution of antibiotic resistance elements at a local, national, and even global scale. In this study, we investigated the possible use of municipal wastewaters in the surveillance of clinically relevant carbapenemase-encoding genes (CRGs), seen as critical antibiotic resistance determinants. In this matter, our results highlight positive correlations among CRGs, microbial diversity, and wastewater physical and chemical parameters. Identified predictors can provide valuable data regarding the level of raw and treated wastewater contamination with these important antibiotic resistance genes. Also, wastewater-based gene abundances were used for the first time to observe possible spatiotemporal trends of CRGs incidence in the general population. Therefore, possible hot spots of carbapenem resistance could be easily identified at the community level, surpassing the limitations of health care-associated settings.


Assuntos
Esgotos , Águas Residuárias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Hospitais , Testes de Sensibilidade Microbiana , Esgotos/microbiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34201491

RESUMO

In the present study, the effects of copper oxide nanoparticles (CuO NPs) on bioactive compounds, the ultrastructural modifications which can occur, and elemental content of wheat were investigated. Changes in the wheat plants grown in presence or absence of CuO NPs were estimated. The application of CuO NPs decreased the amounts of chlorophylls and carotenoids and increased the amounts of polyphenols and antioxidant capacity. Ultrastructural analysis showed that the plants treated with CuO NPs were negatively affected. Soil amending completely inhibited the accumulation of seventeen elements, while K, Br, Al, and Zn were accumulated and Cl, Na, Ba, and Sr content decreased in wheat samples, regardless of the type of NPs applied. The application of chemically obtained NPs induced the most significant changes, completely blocking the assimilation of Fe, Mo, As, Sb, and Sm, and favoring much higher accumulation of Br than biogenic NPs. The decrease in chlorophylls and carotenoids is correlated with increase in antioxidant capacity, and occurs with increase of Mo, Al, Mg, K, Zn, and Ca content. The behavior of total polyphenols is correlated with Br content, and antagonist to Al behavior. From the point of view of bioactive compounds, the most affected plants were those that grew in the presence of CuO-NP-cel, while from the point of view of elementary analysis, the most affected plants were those grown in the presence of CuO-NP. By corroborating the obtained results, it was found that the CuO NPs have a negative effect on wheat plants.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre/toxicidade , Íons , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Solo , Triticum
7.
J Fungi (Basel) ; 7(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069296

RESUMO

Filamentous fungi native to heavy metals (HMs) contaminated sites have great potential for bioremediation, yet are still often underexploited. This research aimed to assess the HMs resistance and Hg remediation capacity of fungi isolated from the rhizosphere of plants resident on highly Hg-contaminated substrate. Analysis of Hg, Pb, Cu, Zn, and Cd concentrations by X-ray spectrometry generated the ecological risk of the rhizosphere soil. A total of 32 HM-resistant fungal isolates were molecularly identified. Their resistance spectrum for the investigated elements was characterized by tolerance indices (TIs) and minimum inhibitory concentrations (MICs). Clustering analysis of TIs was coupled with isolates' phylogeny to evaluate HMs resistance patterns. The bioremediation potential of five isolates' live biomasses, in 100 mg/L Hg2+ aqueous solution over 48 h at 120 r/min, was quantified by atomic absorption spectrometry. New species or genera that were previously unrelated to Hg-contaminated substrates were identified. Ascomycota representatives were common, diverse, and exhibited varied HMs resistance spectra, especially towards the elements with ecological risk, in contrast to Mucoromycota-recovered isolates. HMs resistance patterns were similar within phylogenetically related clades, although isolate specific resistance occurred. Cladosporium sp., Didymella glomerata, Fusarium oxysporum, Phoma costaricensis, and Sarocladium kiliense isolates displayed very high MIC (mg/L) for Hg (140-200), in addition to Pb (1568), Cu (381), Zn (2092-2353), or Cd (337). The Hg biosorption capacity of these highly Hg-resistant species ranged from 33.8 to 54.9 mg/g dry weight, with a removal capacity from 47% to 97%. Thus, the fungi identified herein showed great potential as bioremediators for highly Hg-contaminated aqueous substrates.

8.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069720

RESUMO

The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcusaureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Vinca/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Testes de Sensibilidade Microbiana
9.
Plants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805226

RESUMO

Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species' leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf's mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.

10.
Antibiotics (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805405

RESUMO

Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.

11.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499159

RESUMO

Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.


Assuntos
Allium/química , Neoplasias/tratamento farmacológico , Fitoterapia , Caspase 3/metabolismo , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alho/química , Humanos , L-Lactato Desidrogenase/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Cebolas/química , Fenóis/farmacologia , Fenóis/toxicidade , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade
12.
Front Pharmacol ; 11: 990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719600

RESUMO

The pathophysiology of inflammation and oxidative stress generated during different types of cancers and anticancer treatments is well documented. Traditionally, grape pomace is used for animal feed, organic fertilizers, ethanol production or is disposed as waste. Because grape pomace is a rich source of antioxidant compounds, the purpose of the study was to evaluate the antioxidant, anti-inflammatory, and antiproliferative effects of fresh and fermented grape pomace extracts of two Vitis vinifera L. varieties Feteasca neagra and Pinot noir cultivated in Romania. Firstly, grape pomace phytochemical analysis and in vitro antioxidant tests were performed. Secondly, the effect of a seven-day pretreatment with grape pomace extracts on the turpentine oil-induced inflammation in rats was assessed by measuring total oxidative status, total antioxidant response, oxidative stress index, malondialdehyde, total thiols, nitric oxide and 3-nitrotyrosine. Thirdly, the antiproliferative properties were evaluated on human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), murine melanoma (B164A5), and keratinocyte (HaCat) cell lines. Feteasca neagra and Pinot noir grape pomace extracts have a rich content of polyphenols and in vitro antioxidant effect. Fermented samples had higher polyphenol content, but fresh samples had better antioxidant activity. Pretreatment with grape pomace extracts reduced inflammation-induced oxidative stress in a concentration-dependent way, fresh samples being more efficient. The malignant cells' proliferation was inhibited by all grape pomace extracts, fermented Feteasca neagra extracts having the strongest effect. Conclusion: fresh and fermented pomace extracts of Vitis vinifera L. varieties Feteasca neagra and Pinot noir cultivated in a Romanian wine region have antioxidant, anti-inflammatory and antiproliferative effects.

13.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331446

RESUMO

5-fluorouracil (5-FU) is an anticancer drug used to inhibit the proliferation of many different tumor cells. Since severe events are associated with this compound, its combination with different anticancer drugs or adjuvants would allow the use of a significantly lower dose of 5-FU. In this study, we highlighted that the combination of allicin with 5-FU inhibited the cell migration and proliferation of colorectal and lung cancer cells. 5-FU inhibited cell growth with a similar inhibitory concentration for both normal and tumor cells (~200µM), while allicin showed different inhibitory concentrations. With an IC50 of 8.625 µM, lung cancer cells were the most sensitive to allicin. Compared to 5-FU and allicin single-agent treatments, the co-treatment showed a reduced viability rate, with p < 0.05. The morphological changes were visible on all three cell lines, indicating that the treatment inhibited the proliferation of both normal and tumor cells. We highlighted different cell death mechanisms-apoptosis for lung cancer and a non-apoptotic cell death for colorectal cancer. The synergistic antitumor effect of 5-FU combined with allicin was visible against lung and colorectal carcinoma cells. Better results were obtained when a lower concentration of 5-FU was combined with allicin than the single-agent treatment at IC50.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Ácidos Sulfínicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos , Sinergismo Farmacológico , Humanos
14.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070017

RESUMO

Medicinal plants are often used as reducing agents to prepare metal nanoparticles through green-synthesis due to natural compounds and their potential as chemotherapeutic drugs. Thus, three types of eco-friendly Ag-MnO2 nanoparticles (Ag-MnO2NPs) were synthesized using C. majus (CmNPs), V. minor (VmNPs), and a 1:1 mixture of the two extracts (MNPs). These NPs were characterized using S/TEM, EDX, XRD, and FTIR methods, and their biological activity was assessed in vitro on normal keratinocytes (HaCaT) and skin melanoma cells (A375). All synthesized NPs had manganese oxide in the middle, and silver oxide and plant extract on the exterior. The NPs had different forms (polygonal, oval, and spherical), uniformly distributed, with crystalline structures and different sizes (9.3 nm for MNPs; 10 nm for VmNPs, and 32.4 nm for CmNPs). The best results were obtained with VmNPs, which reduced the viability of A375 cells up 38.8% and had a moderate cytotoxic effect on HaCaT (46.4%) at concentrations above 500 µg/mL. At the same concentrations, CmNPs had a rather proliferative effect, whereas MNPs negatively affected both cell lines. For the first time, this paper proved the synergistic action of the combined C. majus and V. minor extracts to form small and uniformly distributed Ag-MnO2NPs with high potential for selective treatments.


Assuntos
Chelidonium/metabolismo , Compostos de Manganês/química , Nanopartículas Metálicas/química , Óxidos/química , Extratos Vegetais/metabolismo , Prata/química , Vinca/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Compostos de Manganês/farmacologia , Óxidos/farmacologia
15.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683743

RESUMO

Onychomycosis is a major health problem due to its chronicity and resistance to therapy. Because some cases associate paronychia, any therapy must target the fungus and the inflammation. Medicinal plants represent an alternative for onychomycosis control. In the present work the antifungal and antioxidant activities of Alium sativum extract against Meyerozyma guilliermondii (Wick.) Kurtzman & M. Suzuki and Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, isolated for the first time from a toenail onychomycosis case, were investigated. The fungal species were confirmed by DNA molecular analysis. A. sativum minimum inhibitory concentration (MIC) and ultrastructural effects were examined. At the MIC concentration (120 mg/mL) the micrographs indicated severe structural alterations with cell death. The antioxidant properties of the A. sativum extract were evaluated is a rat turpentine oil induced inflammation, and compared to an anti-inflammatory drug, diclofenac, and the main compound from the extract, allicin. A. sativum reduced serum total oxidative status, malondialdehyde and nitric oxide production, and increased total thiols. The effects were comparable to those of allicin and diclofenac. In conclusion, the garlic extract had antifungal effects against M. guilliermondii and R. mucilaginosa, and antioxidant effect in turpentine-induced inflammation. Together, the antifungal and antioxidant activities support that A. sativum is a potential alternative treatment in onychomycosis.


Assuntos
Antifúngicos/uso terapêutico , Antioxidantes/uso terapêutico , Alho/química , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Extratos Vegetais/uso terapêutico , Rhodotorula/química , Saccharomycetales/química , Animais , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Contagem de Colônia Microbiana , Sequestradores de Radicais Livres/química , Humanos , Masculino , Unhas/efeitos dos fármacos , Unhas/microbiologia , Unhas/patologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Picratos/química , Extratos Vegetais/farmacologia , Ratos Wistar , Rhodotorula/efeitos dos fármacos , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/ultraestrutura , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/ultraestrutura , Ácidos Sulfônicos/química
16.
Oxid Med Cell Longev ; 2019: 5049643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281580

RESUMO

Known for centuries throughout the world, Plantago species have long been used as traditional herbal remedies for many diseases related to inflammatory conditions of the skin, respiratory and digestive tract, or even malignancy. This study is aimed first at investigating the in vitro antioxidant and regenerative effects of Plantago sempervirens Crantz hydroalcoholic extract followed by an in vivo experiment using a turpentine oil-induced inflammation model. The in vitro evaluation for antioxidant activity was performed using classical assays such as DPPH and TEAC scavenging assays but also EPR, and the total phenolic content was determined using the Folin-Ciocalteu reagent. The wound healing assay was performed on human cells (Human EA.hy926). Besides, the prooxidant activity was determined using a method which involves in situ free radical generation by laccase and the oxidation of haemoglobin. On turpentine oil-induced inflammation in rats, the in vivo effects of three doses of P. sempervirens extracts (100%, 50%, and 25%) were assessed by measuring oxidative stress (MDA, TOS, OSI, NO, CAT, and SOD) and inflammatory (CRP, WBC, and NEU) parameters. Having a rich polyphenolic content, the xerophyte P. sempervirens exhibited a strong in vitro antioxidant activity by scavenging radicals, enhancing cell regeneration, and reducing oxidative stress markers. Diluted P. sempervirens extract (25%) exhibited the best antioxidant, wound healing, and anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Plantago/química , Animais , Anti-Inflamatórios/farmacologia , Feminino , Ratos , Ratos Wistar
17.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344978

RESUMO

The allicin pleiotropic effects, which include anti-inflammatory, anti-oxidant, anti-tumoral, and antibacterial actions, were well demonstrated and correlated with various molecular pathways. The immunostimulatory mechanism of allicin has not been elucidated; however, there is a possible cytokine stimulation from immunoglobulin release caused by allicin. In this study, when Wistar female rats and CD19+ lymphocytes were treated with three different doses of allicin, immunoglobulins, glutathione, and oxidative stress markers were assayed. Molecular docking was performed between S-allylmercaptoglutathione (GSSA)-a circulating form of allicin in in vivo systems formed by the allicin interaction with glutathione (GSH)-and scavenger receptors class A and B from macrophages, as well as CD19+ B lymphocytes. Our data demonstrated a humoral immunostimulatory effect of allicin in rats and direct stimulation of B lymphocytes by S-allyl-mercapto-glutathione, both correlated with decreased catalase (CAT) activity. The molecular docking revealed that S-allyl-mercapto-glutathione interacting with Colec12, MARCO (class A), and SCARB1 (class B) scavenger receptors in in vitro tests demonstrates a direct stimulation of immunoglobulin secretion by GSSA in CD19+ B lymphocytes. These data collectively indicate that GSSA stimulates immunoglobulin secretion by binding on scavenger receptors class B type 1 (SCARB1) from CD19+ B lymphocytes.


Assuntos
Colectinas/genética , Estresse Oxidativo/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Depuradores/genética , Receptores Depuradores Classe B/genética , Ácidos Sulfínicos/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antígenos CD19/genética , Antígenos CD19/imunologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Catalase/genética , Dissulfetos , Glutationa/genética , Glutationa/imunologia , Humanos , Imunização , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Acoplamento Molecular , Ratos , Ácidos Sulfínicos/imunologia
18.
Oxid Med Cell Longev ; 2019: 6439021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949880

RESUMO

The prodrug potential of Mahonia aquifolium, a plant used for centuries in traditional medicine, recently gained visibility in the literature, and the activity of several active compounds isolated from its extracts was studied on biologic systems in vitro and in vivo. Whereas the antioxidative and antitumor activities of M. aquifolium-derived compounds were studied at some extent, there are very few data about their outcome on the immune system and tumor cells. To elucidate the M. aquifolium potential immunomodulatory and antiproliferative effects, the bark, leaf, flower, green fruit, and ripe fruit extracts from the plant were tested on peripheral blood mononuclear cells and tumor cells. The extracts exert fine-tuned control on the immune response, by modulating the CD25 lymphocyte activation pathway, the interleukin-10 signaling, and the tumor necrosis-alpha secretion in four distinct human peripheral blood mononuclear cell (PBMC) subpopulations. M. aquifolium extracts exhibit a moderate cytotoxicity and changes in the signaling pathways linked to cell adhesion, proliferation, migration, and apoptosis of the tumor cells. These results open perspectives to further investigation of the M. aquifolium extract prodrug potential.


Assuntos
Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/imunologia , Mahonia/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Adulto , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia
19.
PLoS One ; 13(7): e0200022, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969484

RESUMO

Galium verum is a well-known medicinal plant which is used in various pathologies. G. verum extracts are characterized here using chromatography, where among the rich pool of phenolic acids of flavonoids two known anti-stress modulators, chlorogenic acid and rutin are identified in high quantities. Additionally, the extracts are characterized using a series of in vitro assays (EPR, DPPH, TPC and TEAC). Considering the chemical findings, the potential beneficial effects of the G. verum extract are explored here in a living organism exposed to stress induced oxidative damages. Thus, the biochemical-modulatory and antioxidant roles of two doses of G. verum extract are examined in animals exposed to acute restraint and dark stress (S). The animals were divided in groups [control, S, SG1 (exposed to 25 mg G. verum extract), SG2 (50 mg extract)]. Increased levels of lipid peroxidation (TBARS from 4.43 to 8.06 nmol/mL), corticosterone from 0.43 to 1.96 µg/dL and epinephrine from 44.43 to 126.7 µg/mL, as well as decreased antioxidant enzymes activities (SOD/CAT) were observed in the S group. The G. verum extract afforded a near-normal equilibrium within the biochemical parameters of animals exposed to RS, by reducing oxidative damage (TBARS at a 3.73 nmol/mL; CS at 0.90 µg/dL; EP at 63.72 µg/mL) and by restoring the antioxidant balance.


Assuntos
Antioxidantes/farmacologia , Escuridão/efeitos adversos , Galium/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Restrição Física/psicologia , Estresse Psicológico/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Colesterol/metabolismo , Corticosterona/sangue , Relação Dose-Resposta a Droga , Epinefrina/sangue , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Ratos , Ratos Wistar , Estresse Psicológico/sangue , Estresse Psicológico/enzimologia , Estresse Psicológico/etiologia
20.
Oxid Med Cell Longev ; 2018: 2879793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050649

RESUMO

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Flores/química , Frutas/química , Mahonia/química , Extratos Vegetais/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Picratos/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Tolueno/análogos & derivados , Tolueno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA