Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Invest Dermatol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663478

RESUMO

Atopic dermatitis (AD) is a common inflammatory skin disease highly attributable to genetic factors. Here, we report results from a genome-wide meta-analysis of AD in 37,541 cases and 1,056,519 controls with data from the FinnGen project, the Estonian Biobank, the UK Biobank, the EAGLE Consortium, and the BioBank Japan. We detected 77 independent AD-associated loci of which 10 were to our knowledge previously unreported. The associated loci showed enrichment in various immune regulatory processes. We further performed subgroup analyses of mild and severe AD, and of early and late-onset AD, with data from the FinnGen project. 55 of the 79 tested variants in the associated loci showed larger effect estimates for severe than mild AD as determined through administered treatment. The age of onset, as determined by the first hospital visit with AD diagnosis, was lower in patients with particular AD-risk alleles. Our findings add to the knowledge of the genetic background of AD and may underlay the development of new therapeutic strategies.

2.
medRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562841

RESUMO

Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.

3.
PLoS Genet ; 19(10): e1010982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871108

RESUMO

BACKGROUND: Preterm birth (<37 weeks of gestation) is a major cause of neonatal death and morbidity. Up to 40% of the variation in timing of birth results from genetic factors, mostly due to the maternal genome. METHODS: We conducted a genome-wide meta-analysis of gestational duration and spontaneous preterm birth in 68,732 and 98,370 European mothers, respectively. RESULTS: The meta-analysis detected 15 loci associated with gestational duration, and four loci associated with preterm birth. Seven of the associated loci were novel. The loci mapped to several biologically plausible genes, for example HAND2 whose expression was previously shown to decrease during gestation, associated with gestational duration, and GC (Vitamin D-binding protein), associated with preterm birth. Downstream in silico-analysis suggested regulatory roles as underlying mechanisms for the associated loci. LD score regression found birth weight measures as the most strongly correlated traits, highlighting the unique nature of spontaneous preterm birth phenotype. Tissue expression and colocalization analysis revealed reproductive tissues and immune cell types as the most relevant sites of action. CONCLUSION: We report novel genetic risk loci that associate with preterm birth or gestational duration, and reproduce findings from previous genome-wide association studies. Altogether, our findings provide new insight into the genetic background of preterm birth. Better characterization of the causal genetic mechanisms will be important to public health as it could suggest new strategies to treat and prevent preterm birth.


Assuntos
Nascimento Prematuro , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/genética , Estudo de Associação Genômica Ampla/métodos , Mães , Fenótipo , Peso ao Nascer
4.
BMC Med ; 20(1): 141, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477570

RESUMO

BACKGROUND: Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth. METHODS: We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas. RESULTS: Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit-Robo signaling, and extracellular matrix organization. CONCLUSIONS: Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Éxons , Feminino , Humanos , Recém-Nascido , Trabalho de Parto Prematuro/genética , Placenta/metabolismo , Gravidez , Nascimento Prematuro/genética , Proteômica , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
5.
J Allergy Clin Immunol ; 149(3): 1105-1112.e9, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34454985

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common chronic inflammatory skin disease with high heritability. Previous genome-wide association studies have identified several loci predisposing to AD. These findings explain approximately 30% of the variance in AD susceptibility, suggesting that further work is required to fully understand the genetic underpinnings. OBJECTIVE: We sought to gain additional understanding of the genetic contribution to AD risk by using biobank resources. METHODS: We completed a genome-wide meta-analysis of AD in 796,661 individuals (Ncases = 22,474) from the FinnGen study, the Estonian Biobank, and the UK Biobank. We further performed downstream in silico analyses to characterize the risk variants at the novel loci. RESULTS: We report 30 loci associating with AD (P < 5 × 10-8), 5 of which are novel. In 2 of the novel loci, we identified missense mutations with deleterious predictions in desmocollin 1 and serpin family B member 7, genes encoding proteins crucial to epidermal strength and integrity. CONCLUSIONS: These findings elucidate novel genetic pathways involved in AD pathophysiology. The likely involvement of desmocollin 1 and serpin family B member 7 in AD pathogenesis may offer opportunities for the development of novel treatment strategies for AD in the future.


Assuntos
Dermatite Atópica , Desmocolinas , Serpinas , Bancos de Espécimes Biológicos , Dermatite Atópica/genética , Desmocolinas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Serpinas/genética
6.
Sci Rep ; 11(1): 17115, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429451

RESUMO

Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal-fetal tolerance and promote labor.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Nascimento Prematuro/genética , Proteínas de Ligação a RNA/genética , Receptores Androgênicos/genética , Adulto , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Recém-Nascido Prematuro , Masculino , Chaperonas Moleculares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Placenta/metabolismo , Gravidez , Proteínas de Ligação a RNA/metabolismo , Receptores Androgênicos/metabolismo , Transcriptoma
7.
Genome Med ; 13(1): 66, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883027

RESUMO

BACKGROUND: The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression. METHODS: We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants. RESULTS: We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections. CONCLUSIONS: These data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation.


Assuntos
Brônquios , COVID-19/genética , Mucosa Respiratória , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/genética , Asma/genética , COVID-19/imunologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Expressão Gênica , Variação Genética , Humanos , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Locos de Características Quantitativas , Fatores de Risco , Fumar/genética
8.
PLoS Genet ; 15(6): e1008107, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194736

RESUMO

Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.


Assuntos
Desenvolvimento Fetal/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Nascimento Prematuro/genética , Receptores Imunológicos/genética , Feminino , Feto , Finlândia , Regulação da Expressão Gênica/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Placenta/patologia , Polimorfismo de Nucleotídeo Único , Gravidez , Glicoproteínas beta 1 Específicas da Gravidez/genética , Nascimento Prematuro/patologia , Transdução de Sinais , Trofoblastos/patologia , Proteínas Roundabout
9.
Pediatr Res ; 84(3): 451-457, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967528

RESUMO

BACKGROUND: Genetic factors associated with bronchiolitis are inadequately characterized. We therefore inspected a selected subpopulation of our previous genome-wide association study (GWAS) of bronchiolitis for overlap with known quantitative trait loci (QTLs) to identify susceptibility loci that potentially affect mRNA and protein levels. METHODS: GWAS included a Finnish-Swedish case-control population (n = 187), matched for age and site. We integrated GWAS variants (p < 10-4) with QTL data. We subsequently verified allele-specific expression of identified QTLs by flow cytometry. Association of the resulting candidate loci with bronchiolitis was tested in three additional cohorts from Finland and Denmark (n = 1201). RESULTS: Bronchiolitis-susceptibility variant rs10772271 resided within QTLs previously associated with NKG2D (NK group 2, member D) mRNA and protein levels. Flow cytometric analysis confirmed the association with protein level in NK cells. The GWAS susceptibility allele (A) of rs10772271 (odds ratio [OR] = 2.34) corresponded with decreased NKG2D expression. The allele was nominally associated with bronchiolitis in one Finnish replicate (OR = 1.50), and the other showed directional consistency (OR = 1.43). No association was detected in Danish population CONCLUSIONS: The bronchiolitis GWAS susceptibility allele was linked to decreased NKG2D expression in the QTL data and in our expression analysis. We propose that reduced NKG2D expression predisposes infants to severe bronchiolitis.


Assuntos
Bronquiolite Viral/genética , Predisposição Genética para Doença , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Alelos , Estudos de Casos e Controles , Criança , Mapeamento Cromossômico , Estudos de Coortes , Dinamarca , Feminino , Finlândia , Estudos de Associação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Lactente , Recém-Nascido , Células Matadoras Naturais/citologia , Desequilíbrio de Ligação , Masculino , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Suécia
11.
Sci Rep ; 7: 41653, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139761

RESUMO

Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish-Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10-5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size.


Assuntos
Bronquiolite/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Alelos , Asma/genética , Asma/virologia , Bronquiolite/metabolismo , Bronquiolite/virologia , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Razão de Chances , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia
12.
New Phytol ; 197(1): 323-335, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106477

RESUMO

FLOWERING LOCUS C (FLC) is one of the main genes influencing the vernalization requirement and natural flowering time variation in the annual Arabidopsis thaliana. Here we studied the effects of vernalization on flowering and its genetic basis in the perennial Arabidopsis lyrata. Two tandemly duplicated FLC genes (FLC1 and FLC2) were compared with respect to expression and DNA sequence. The effect of vernalization on flowering and on the expression of FLC1 was studied in three European populations. The genetic basis of the FLC1 expression difference between two of the populations was further studied by expression quantitative trait locus (eQTL) mapping and sequence analysis. FLC1 was shown to have a likely role in the vernalization requirement for flowering in A. lyrata. Vernalization decreased its expression and the northern study populations showed higher FLC1 expression than the southern one. eQTL mapping between two of the populations revealed one eQTL affecting FLC1 expression in the genomic region containing the FLC genes. Most FLC1 sequence differences between the study populations were found in the promoter region and in the first intron. Variation in the FLC1 sequence may cause differences in FLC1 expression between late- and early-flowering A. lyrata populations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Temperatura Baixa , Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Duplicados , Genes de Plantas , Íntrons , Proteínas de Domínio MADS/genética , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA