Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38980277

RESUMO

Many animals share a lifelong capacity to adapt their growth rates and body sizes to changing environmental food supplies. However, the cellular and molecular basis underlying this plasticity remains only poorly understood. We therefore studied how the sea anemones Nematostella vectensis and Aiptasia (Exaiptasia pallida) respond to feeding and starvation. Combining quantifications of body size and cell numbers with mathematical modelling, we observed that growth and shrinkage rates in Nematostella are exponential, stereotypic and accompanied by dramatic changes in cell numbers. Notably, shrinkage rates, but not growth rates, are independent of body size. In the facultatively symbiotic Aiptasia, we show that growth and cell proliferation rates are dependent on the symbiotic state. On a cellular level, we found that >7% of all cells in Nematostella juveniles reversibly shift between S/G2/M and G1/G0 cell cycle phases when fed or starved, respectively. Furthermore, we demonstrate that polyp growth and cell proliferation are dependent on TOR signalling during feeding. Altogether, we provide a benchmark and resource for further investigating the nutritional regulation of body plasticity on multiple scales using the genetic toolkit available for Nematostella.


Assuntos
Tamanho Corporal , Proliferação de Células , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/fisiologia , Ciclo Celular/fisiologia , Comportamento Alimentar/fisiologia , Transdução de Sinais , Simbiose , Serina-Treonina Quinases TOR/metabolismo
2.
Methods Mol Biol ; 2680: 67-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428371

RESUMO

The capability to simultaneously apply different molecular tools to visualize a wide variety of changes in genetic expression and tissue composition in Schmidtea mediterranea has always been of great interest. The most commonly used techniques are fluorescent in situ hybridization (FISH) and immunofluorescence (IF) detection. Here, we describe a novel way to perform both protocols together adding the possibility to combine them with fluorescent-conjugated lectin staining to further broaden the detection of tissues. We also present a novel lectin fixation protocol to enhance the signal, which could be useful when single-cell resolution is required.


Assuntos
Planárias , Animais , Hibridização in Situ Fluorescente , Planárias/genética , Lectinas/genética , Lectinas/metabolismo , Imunofluorescência , Expressão Gênica
3.
Nat Commun ; 14(1): 298, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653403

RESUMO

For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/ß-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/ß-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/ß-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.


Assuntos
Planárias , Animais , Planárias/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Montagem e Desmontagem da Cromatina , beta Catenina/genética , beta Catenina/metabolismo , Padronização Corporal/genética
4.
Front Cell Dev Biol ; 10: 808045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273960

RESUMO

Forkhead box (Fox) genes belong to the "winged helix" transcription factor superfamily. The function of some Fox genes is well known, such as the role of foxO in controlling metabolism and longevity and foxA in controlling differentiation of endodermal tissues. However, the role of some Fox factors is not yet well characterized. Such is the case of FoxK genes, which are mainly studied in mammals and have been implicated in diverse processes including cell proliferation, tissue differentiation and carcinogenesis. Planarians are free-living flatworms, whose importance in biomedical research lies in their regeneration capacity. Planarians possess a wide population of pluripotent adult stem cells, called neoblasts, which allow them to regenerate any body part after injury. In a recent study, we identified three foxK paralogs in the genome of Schmidtea mediterranea. In this study, we demonstrate that foxK1 inhibition prevents regeneration of the ectodermal tissues, including the nervous system and the epidermis. These results correlate with foxK1 expression in neoblasts and in neural progenitors. Although the triggering of wound genes expression, polarity reestablishment and proliferation was not affected after foxK1 silencing, the apoptotic response was decreased. Altogether, these results suggest that foxK1 would be required for differentiation and maintenance of ectodermal tissues.

5.
Sci Rep ; 11(1): 2947, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536473

RESUMO

The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.


Assuntos
Evolução Biológica , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Helminto/metabolismo , Planárias/genética , Morte Celular Regulada/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Filogenia
6.
Genes (Basel) ; 12(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467529

RESUMO

An organizer is defined as a group of cells that secrete extracellular proteins that specify the fate of surrounding cells according to their concentration. Their function during embryogenesis is key in patterning new growing tissues. Although organizers should also participate in adult development when new structures are regenerated, their presence in adults has only been identified in a few species with striking regenerative abilities, such as planarians. Planarians provide a unique model to understand the function of adult organizers, since the presence of adult pluripotent stem cells provides them with the ability to regenerate any body part. Previous studies have shown that the differential activation of the WNT/ß-catenin signal in each wound is fundamental to establish an anterior or a posterior organizer in the corresponding wound. Here, we identify the receptors that mediate the WNT/ß-catenin signal in posterior-facing wounds. We found that Wnt1-Fzd1-LRP5/6 signaling is evolutionarily conserved in executing a WNT/ß-catenin signal to specify cell fate and to trigger a proliferative response. Our data allow a better understanding of the mechanism through which organizers signal to a "competent" field of cells and integrate the patterning and growth required during de novo formation of organs and tissues.


Assuntos
Proliferação de Células/fisiologia , Receptores Frizzled/metabolismo , Proteínas de Helminto/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Planárias/fisiologia , Regeneração/fisiologia , Via de Sinalização Wnt/fisiologia , Animais
7.
Development ; 147(7)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32122990

RESUMO

Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Morte Celular/genética , Proliferação de Células/genética , Família Multigênica/fisiologia , Planárias , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Contagem de Células , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Planárias/classificação , Planárias/citologia , Planárias/genética , Planárias/fisiologia , Regeneração/genética , Sequências de Repetição em Tandem
8.
Int J Mol Sci ; 16(11): 26543-54, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556349

RESUMO

The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A ßcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (ßcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis.


Assuntos
Padronização Corporal , Planárias/crescimento & desenvolvimento , Planárias/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Padronização Corporal/genética , Inativação Gênica , Homeostase , Planárias/genética , Regeneração/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA