Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Chem ; 10: 880782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815205

RESUMO

Azo dyes are defined by the presence of a characteristic N=N group. Sudan I and Sudan II are synthetic azo dyes that have been used as coloring agents. Although animal toxicity studies suggest that Sudan dyes are mutagenic, their molecular mechanism of action is unknown, thus making it challenging to establish thresholds for tolerable daily intake or to understand how these molecules could be modified to ameliorate toxicity. In addition, dye metabolites, such as azobiphenyl and 4-aminobiphenyl, have been correlated with epigenetic alterations. We shed some light on the mechanisms of Sudan dye genotoxicity through a molecular modeling study of Sudan I and Sudan II dyes and two common metabolites interacting with DNA as adducts. The results suggest that all four adducts cause significant perturbations to the DNA helical conformation and structure; thus, it can be inferred that DNA repair and replication processes would be significantly impacted.

2.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946629

RESUMO

Polylactic acid (PLA) is a widely used bioresorbable polymer in medical devices owing to its biocompatibility, bioresorbability, and biodegradability. It is also considered a sustainable solution for a wide variety of other applications, including packaging. Because of its widespread use, there have been many studies evaluating this polymer. However, gaps still exist in our understanding of the hydrolytic degradation in extreme pH environments and its impact on physical and mechanical properties, especially in fibrous materials. The goal of this work is to explore the hydrolytic degradation of PLA fibers as a function of a wide range of pH values and exposure times. To complement the experimental measurements, molecular-level details were obtained using both molecular dynamics (MD) simulations with ReaxFF and density functional theory (DFT) calculations. The hydrolytic degradation of PLA fibers from both experiments and simulations was observed to have a faster rate of degradation in alkaline conditions, with 40% of strength loss of the fibers in just 25 days together with an increase in the percent crystallinity of the degraded samples. Additionally, surface erosion was observed in these PLA fibers, especially in extreme alkaline environments, in contrast to bulk erosion observed in molded PLA grafts and other materials, which is attributed to the increased crystallinity induced during the fiber spinning process. These results indicate that spun PLA fibers function in a predictable manner as a bioresorbable medical device when totally degraded at end-of-life in more alkaline conditions.

3.
ACS Appl Mater Interfaces ; 13(37): 44460-44469, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34495628

RESUMO

A combined experimental and molecular dynamics (MD) simulation approach was used to investigate the effects of the nanoconfinement of a highly CO2/CH4-selective ionic liquid (IL), 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]), in porous poly(vinylidene fluoride) (PVDF) matrices on the gas separation performance of the resulting membranes. The observed experimental CO2/CH4 permselectivity increased by about 46% when the nominal pore diameter in PVDF, which is a measure of nanoconfinement, decreased from 450 to 100 nm, thus demonstrating nanoconfinement improvements of gas separation. MD simulations corroborated these experimental observations and indicated a suppression in the sorption of CH4 by [EMIM][SCN] when the IL nanoconfinement length decreased within the nonpolar PVDF surfaces. This is consistent with the experimental observation that the CH4 permeance through the IL confined in nonpolar PVDF is significantly less than the CH4 permeance through the IL confined in a water-wetting polar formulation of PVDF. The potential of mean force calculations further indicated that CO2 has more affinity to the nonpolar PVDF surface than CH4. Also, a charge/density distribution analysis of the IL in the PVDF-confined region revealed a layering of the IL into [EMIM]- and [SCN]-rich regions, where CH4 was preferentially distributed in the former and CO2 in the latter. These molecular insights into the nanoconfinement-driven mechanisms in polymer/IL membranes provide a framework for a better molecular design of such membranes for critical gas separation and CO2 capture applications.

4.
ACS Omega ; 6(24): 15920-15928, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179636

RESUMO

Poly(lactic acid) (PLA) is an attractive biomaterial due to its biocompatibility, biodegradability, and fiber-forming ability. However, the polymer is highly susceptible to both hydrolytic and thermal degradation during processing. Melt processing conditions typically involve high temperature and shear, whereas to prevent premature degradation, PLA needs to be processed under the mildest conditions that still yield the desired yarn properties. Thus, there is a need to determine the optimum processing conditions to achieve the desired properties of extruded PLA yarn. This study focuses on the effect of melt-spinning process parameters on the mechanical and physicochemical properties of the resulting PLA yarn and to derive their process-property relationships. The study compares the effect of process parameters like melt temperature, throughput through the spinneret, take-up speed at the wind-up roller, draw ratio, and drawing temperature on the yarn properties such as the yarn size (linear mass density), tenacity, elongation at break, crystallinity, and molecular weight. Depending on the combination of process parameters, the resulting PLA yarn had a yarn size ranging from 6.2 to 101.6 tex, tenacity ranging from 2.5 to 34.1 gf/tex, elongation at break ranging from 4 to 480%, and degree of crystallinity ranging from 14.6 to 62.2%. Certain combinations of processing parameters resulted in higher process-induced degradation, as evident from the reduction in molecular weight, ranging from 7.6% reduction to 20.5% reduction. Findings from this study increase our understanding on how different process parameters can be utilized to achieve the desired properties of the as-spun and drawn PLA yarn while controlling process-induced premature degradation.

5.
ACS Omega ; 6(13): 8950-8957, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842765

RESUMO

To understand the properties of polyaniline (PANI), aim gas, and the interaction between them in PANI-based gas sensors and help us to design sensors with better properties, direct calculations with molecular dynamics (MD) simulations were done in this work. Polyamide 6/polyaniline (PA6/PANI) nanofiber ammonia gas sensors were studied as an example here, and the structural, morphological, and ammonia sensing properties (to 50-250 ppm ammonia) of PA6/PANI nanofibers were tested and evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, and a homemade test system. The PA6/PANI nanofibers were prepared by in situ polymerization of aniline with electrospun PA6 nanofibers as templates and hydrochloric acid (HCl) as a doping agent for PANI, and the sensors show rapid response, ideal selectivity, and acceptable repeatability. Then, complementary molecular dynamics simulations were performed to understand how ammonia molecules interact with HCl-doped PANI chains, thus providing insights into the molecular-level details of the ammonia sensing performances of this system. Results of the radial distribution functions and mean square displacement analysis of the MD simulations were consistent with the dedoping mechanism of the PANI chains.

6.
J Chem Phys ; 153(12): 124904, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003715

RESUMO

The mechanical properties of physical gels generated by selectively swelling a homologous series of linear multiblock copolymers are investigated by quasistatic uniaxial tensile tests. We use the slip-tube network model to extract the contributions arising from network crosslinks and chain entanglements. The composition dependence of these contributions is established and considered in terms of simulations that identify the probabilities associated with chain conformations. Dynamic rheology provides additional insight into the characteristics and thermal stability of the molecular networks.

7.
Biomacromolecules ; 21(6): 2463-2472, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378896

RESUMO

The self-assembly behavior of an ABC triblock copolypeptide consisting of poly(ethylene oxide-b-(leucine-s-valine)-b-lysine) (PEO-PLV-PK) was examined via dynamic light scattering in dilute aqueous solution. Leucine is a hydrophobic, α-helix forming polypeptide that exhibits a "zipper effect" in coiled-coil dimers. We hypothesize that the specific interaction afforded by the leucine zipper dominates the thermodynamics of self-assembly through the side-by-side ordering of α-helices, which drives vesicle formation in a polymer with only 6 wt % hydrophobic content. Additionally, a multitude of assembly sizes and morphologies were attainable from a single polymer, depending on the solution processing method. Thermodynamic effects of the leucine zipper can be interpreted, in part, from solubility parameters determined from molecular modeling. The combination of synthesis, solvent processing, and computational studies helps to elucidate the thermodynamic effects of this unique assembly motif on classical self-assembly processes.


Assuntos
Zíper de Leucina , Peptídeos , Sequência de Aminoácidos , Leucina , Modelos Moleculares
8.
J Phys Chem B ; 124(2): 404-412, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31845800

RESUMO

The goal of this work is to provide physical insights into the formation and stability of inclusion complexes (ICs) in aqueous solution between cyclodextrins (CDs) and a common flame retardant, triphenyl phosphate (TPP). Quantum chemistry calculations reveal the possible energetically favorable geometries of TPP in their 1:1 IC form with α-, ß-, and γ-CDs as well as their associated complexation, conformational, and interaction energies. High-resolution mass spectrometry (MS) and tandem MS were used with electrospray ionization to study the soluble ICs formed between TPP and CDs. Successful formation of TPP ICs with both ß- and γ-CD in solution was detected in the ratio of 1:1 using high-resolution MS in the positive ion mode. Collision-induced dissociation confirmed the formation of TPP ICs with ß- and γ-CDs by generating two product ions, TPP and ß- or γ-CD, in both cases. Although quantum chemistry calculations suggest that IC formation with α-CD is energetically possible, an IC with α-CD is not observed in aqueous solution using MS, which aligns with what we also previously observed in the solid state. Since TPP forms stable ICs with ß- and γ-CDs both in the solid state and in solution suggests that complexation could be a safer alternative than applying TPP directly to a substrate. In addition, complexation with CDs in solution also opens up new processing methods to create flame-retardant fabrics and foams with TPP.

9.
J Chem Phys ; 148(23): 231101, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29935523

RESUMO

Network characteristics in physical gels composed of solvated block copolymers varying in molecular design are examined here by dynamic rheology and computer simulations. In two triblock copolymer series, one with chain length (N) varied at constant copolymer composition (f) and the other with f varied at constant N, we discern the dependence of equilibrium network metrics on both N and f. Increasing the block number in a linear multiblock series at constant N and f escalates conformational complexity, which dominates network connectivity classified according to a midblock conformation index.

10.
ACS Omega ; 3(10): 12648-12657, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457994

RESUMO

Soft, wearable or printable strain sensors derived from conductive polymer nanocomposites (CPNs) are becoming increasingly ubiquitous in personal-care applications. Common elastomers employed in the fabrication of such piezoresistive CPNs frequently rely on chemically cross-linked polydiene or polysiloxane chemistry, thereby generating relatively inexpensive and reliable sensors that become solid waste upon application termination. Moreover, the shape anisotropy of the incorporated conductive nanoparticles can produce interesting electrical effects due to strain-induced spatial rearrangement. In this study, we investigate the morphological, mechanical, electrical, and electromechanical properties of CPNs generated from thermoplastic elastomer (TPE) triblock copolymer systems containing vapor-grown carbon nanofiber (CNF). Modulus-tunable TPE gels imbibed with a midblock-selective aliphatic oil exhibit well-behaved properties with increasing CNF content, but generally display nonlinear negative piezoresistance at different strain amplitudes and stretch rates due to nanofiber mobility upon CPN strain-cycling. In contrast, a neat TPE possessing low hard-block content yields a distinctive strain-reversible piezoresistive response, as well as low electrical hysteresis, upon cyclic deformation. Unlike their chemically cross-linked analogs, these physically cross-linked and thus environmentally benign CPNs are fully reprocessable by thermal and/or solvent means.

11.
Soft Matter ; 13(46): 8672-8677, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29114685

RESUMO

Nanocomposites prepared by incorporating functionalized polyhedral oligomeric silsesquioxane (POSS) into polymer matrices afford a wide range of versatile hybrid materials for use in technologies ranging from cosmetics and pharmaceuticals to sensors and batteries. Here, we investigate the phase behavior of nanocomposites composed of poly(ethylene oxide) (PEO) and monosubstituted isobutyl POSS (iPOSS) modified with different functional moieties. Microscopic analyses of blends containing these iPOSS variants reveal the existence of different macroscopic morphologies and surface topologies. In the presence of octa-iPOSS, a POSS-rich surface cell motif reminiscent of breath patterns develops, whereas addition of allyl-iPOSS promotes the formation of surface plates. While aminopropyl-iPOSS forms dispersed aggregates, maleamic acid-iPOSS disperses in PEO with little effect on PEO crystal morphology. We perform rotational isomeric state Monte Carlo simulations to discern the effect of monosubstitution on the interaction energy between iPOSS and PEO, and establish the molecular-level origin for these observed differences in phase behavior.

12.
ACS Appl Mater Interfaces ; 9(46): 39940-39944, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29131574

RESUMO

In the presence of a midblock-selective solvent, triblock copolymers not only self-organize but also form a molecular network. Thermoplastic elastomer gels constitute examples of such materials and serve as sealants and adhesives, as well as ballistic, microfluidic, and electroactive media. We perform Monte Carlo and dissipative particle dynamics simulations to investigate the phase behavior and network characteristics of these materials. Of particular interest is the existence of a truncated octahedral morphology that resembles the atomic arrangement of various inorganic species. Both simulation approaches quantify the midblock bridges responsible for network development and thus provide a detailed molecular picture of these composition-tunable soft materials.

13.
Macromol Rapid Commun ; 37(22): 1837-1843, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27711987

RESUMO

As emerging technologies continue to require diverse materials capable of exhibiting tunable stimuli-responsiveness, shape-memory materials are of considerable significance because they can change size and/or shape in controllable fashion upon environmental stimulation. Of particular interest, shape-memory polymers (SMPs) have secured a central role in the ongoing development of relatively lightweight and remotely deployable devices that can be further designed with specific surface properties. In the case of thermally-activated SMPs, two functional chemical species must be present to provide (i) an elastic network capable of restoring the SMP to a previous strain state and (ii) switching elements that either lock-in or release a temporary strain at a well-defined thermal transition. While these species are chemically combined into a single macromolecule in most commercially available SMPs, this work establishes that, even though they are physically separated across one or more polymer/polymer interfaces, their shape-memory properties are retained in melt-spun bicomponent fibers. In the present study, we investigate the effects of fiber composition and cross-sectional geometry on both conventional and cold-draw shape memory, and report surprisingly high levels of strain fixity and recovery that generally improve upon strain cycling.

14.
ACS Appl Mater Interfaces ; 8(21): 13583-9, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27206103

RESUMO

Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces.

15.
J Chem Phys ; 141(12): 121103, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273403

RESUMO

Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.

16.
Biomacromolecules ; 15(4): 1476-83, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24650049

RESUMO

Molecular dynamics simulations were used to characterize the wetting behavior of crystalline cellulose planes in contact with a thin oily film of oleic acid. Cellulose crystal planes with higher molecular protrusions and increased surface area produced stronger adhesion if compared to other crystal planes due to enhanced wetting and hydrogen bonding. The detailed characteristics of crystal plane features and the contribution of directional hydrogen bonding was investigated. Similarly, oleophilicity of the cellulose planes increased with the increase in surface roughness and number of directional hydrogen bonds. These results correlate with conclusions drawn from experimental studies such as adhesion of an ink vehicle on cellulose surface.


Assuntos
Celulose/química , Simulação de Dinâmica Molecular , Ácido Oleico/química , Materiais Biocompatíveis/química , Cristalização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
17.
J Chem Phys ; 141(24): 244911, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554184

RESUMO

As thermoplastic elastomers, triblock copolymers constitute an immensely important class of shape-memory soft materials due to their unique ability to form molecular networks stabilized by physical, rather than chemical, cross-links. The extent to which such networks develop in triblock and higher-order multiblock copolymers is sensitive to the formation of midblock bridges, which serve to connect neighboring microdomains. In addition to bridges, copolymer molecules can likewise form loops and dangling ends upon microphase separation or they can remain unsegregated. While prior theoretical and simulation studies have elucidated the midblock bridging fraction in triblock copolymer melts, most have only considered strongly segregated systems wherein dangling ends and unsegregated chains become relatively insignificant. In this study, simulations based on dissipative particle dynamics are performed to examine the self-assembly and networkability of moderately segregated triblock copolymers. Utilizing a density-based cluster-recognition algorithm, we demonstrate how the simulations can be analyzed to extract information about microdomain formation and permit explicit quantitation of the midblock bridging, looping, dangling, and unsegregated fractions for linear triblock copolymers varying in chain length, molecular composition, and segregation level. We show that midblock conformations can be sensitive to variations in chain length, molecular composition, and bead repulsion, and that a systematic investigation can be used to identify the onset of strong segregation where the presence of dangling and unsegregated fractions are minimal. In addition, because this clustering approach is robust, it can be used with any particle-based simulation method to quantify network formation of different morphologies for a wide range of triblock and higher-order multiblock copolymer systems.

18.
J Phys Chem B ; 116(5): 1570-8, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22292494

RESUMO

The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a "soft" confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively.


Assuntos
Celulose/química , Simulação de Dinâmica Molecular , Polipropilenos/química , Água/química
19.
J Phys Chem B ; 116(7): 2023-30, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22257220

RESUMO

Conductive polymers have several applications such as in flexible displays, solar cells, and biomedical sensors. An inclusion complex of a conductive polymer and cyclodextrin is desired for some applications such as for molecular wires. In this study, different orientations of ß-cyclodextrin rings on a single polyaniline (PANI) chain in an alternating emeraldine form were simulated using molecular dynamics. The simulations were performed in an implicit solvent environment that corresponds to experimental conditions. When the larger opening of the ß-cyclodextrin toroids face the same direction, the cyclodextrins tend to repel each other. Alternating the orientation of the ß-cyclodextrins on the chain causes the ß-cyclodextrin rings to be more attractive to one another and form pairs or stacks of rings. These simulations explain how the ß-cyclodextrins can be used to shield the polyaniline from outside chemical action by analyzing the PANI/cyclodextrin interactions from a molecular perspective.

20.
ACS Appl Mater Interfaces ; 4(1): 87-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22136187

RESUMO

The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 µs(-1) and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO(m)PO(n)EO(m)) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA