Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
2.
Glia ; 72(2): 338-361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37860913

RESUMO

Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.


Assuntos
Doenças Desmielinizantes , Vesículas Extracelulares , Camundongos , Ratos , Animais , Transferrina/metabolismo , Doenças Desmielinizantes/patologia , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Vesículas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
3.
ASN Neuro ; 15: 17590914231170703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093743

RESUMO

Although transferrin (Tf) is a glycoprotein best known for its role in iron delivery, iron-independent functions have also been reported. Here, we assessed apoTf (aTf) treatment effects on Neuro-2a (N2a) cells, a mouse neuroblastoma cell line which, once differentiated, shares many properties with neurons, including process outgrowth, expression of selective neuronal markers, and electrical activity. We first examined the binding of Tf to its receptor (TfR) in our model and verified that, like neurons, N2a cells can internalize Tf from the culture medium. Next, studies on neuronal developmental parameters showed that Tf increases N2a survival through a decrease in apoptosis. Additionally, Tf accelerated the morphological development of N2a cells by promoting neurite outgrowth. These pro-differentiating effects were also observed in primary cultures of mouse cortical neurons treated with aTf, as neurons matured at a higher rate than controls and showed a decrease in the expression of early neuronal markers. Further experiments in iron-enriched and iron-deficient media showed that Tf preserved its pro-differentiation properties in N2a cells, with results hinting at a modulatory role for iron. Moreover, N2a-microglia co-cultures revealed an increase in IL-10 upon aTf treatment, which may be thought to favor N2a differentiation. Taken together, these findings suggest that Tf reduces cell death and favors the neuronal differentiation process, thus making Tf a promising candidate to be used in regenerative strategies for neurodegenerative diseases.


Assuntos
Neurônios , Transferrina , Camundongos , Animais , Transferrina/química , Transferrina/metabolismo , Neurônios/metabolismo , Ferro/metabolismo , Linhagem Celular , Diferenciação Celular
4.
Mol Neurobiol ; 60(4): 1949-1963, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36595194

RESUMO

Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.


Assuntos
Astrócitos , Deficiências de Ferro , Humanos , Proteômica , Oligodendroglia/metabolismo , Metabolismo Energético , Metaboloma
5.
Int Immunopharmacol ; 105: 108571, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35093689

RESUMO

Cladribine (2CdA) is a synthetic chlorinated purine nucleoside analogue which acts as a pro-drug requiring intracellular phosphorylation to be activated. It is biologically active in selected cell types, which results in a reduction of circulating T and B lymphocytes implicated in multiple sclerosis (MS) pathogenesis. In addition, 2CdA shows good central nervous system (CNS) penetration and can therefore exert its action on microglia and astrocytes. Therefore, we studied the effects of 2CdA on microglial cells and astrocytes, both emerging as potential targets for MS therapy. Other than its effects on the peripheral immune system, 2CdA induced the apoptosis of microglial cells, inhibited their proliferation and reduced the production of cytokines, particularly pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α. These represent additional mechanisms of 2CdA that may contribute to limiting inflammatory pathways. By contrast, astrocytes showed resistance to the action of 2CdA, which may be explained by differences in its intracellular phosphorylation. Insights into the mechanism of action of and resistance to 2CdA in CNS-resident cells may prove crucial for its optimal use.


Assuntos
Cladribina , Esclerose Múltipla , Apoptose , Cladribina/farmacologia , Cladribina/uso terapêutico , Humanos , Microglia , Esclerose Múltipla/tratamento farmacológico , Fosforilação
6.
J Neurochem ; 160(6): 643-661, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935149

RESUMO

Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modeled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation, and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases. Cover Image for this issue: https://doi.org/10.1111/jnc.15394.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Fatores Estimuladores de Colônias/efeitos adversos , Fatores Estimuladores de Colônias/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo
7.
Stem Cell Res Ther ; 12(1): 590, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823607

RESUMO

BACKGROUND: Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease. METHODS: Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. RESULTS: Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. CONCLUSIONS: We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação/fisiologia , Diferenciação Celular/genética , Criança , Epilepsia/genética , Epilepsia/metabolismo , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo
8.
J Neurochem ; 159(1): 128-144, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081798

RESUMO

Atypical connectivity between brain regions and altered structure of the corpus callosum (CC) in imaging studies supports the long-distance hypoconnectivity hypothesis proposed for autism spectrum disorder (ASD). The aim of this study was to unveil the CC ultrastructural and cellular changes employing the valproic acid (VPA) rat model of ASD. Male Wistar rats were exposed to VPA (450 mg/kg i.p.) or saline (control) during gestation (embryonic day 10.5), and maturation, exploration, and social behavior were subsequently tested. Myelin content, ultrastructure, and oligodendroglial lineage were studied in the CC at post-natal days 15 (infant) and 36 (juvenile). As a functional outcome, brain metabolic activity was determined by positron emission tomography. Concomitantly with behavioral deficits in juvenile VPA rats, the CC showed reduced myelin basic protein, conserved total number of axons, reduced percentage of myelinated axons, and aberrant and less compact arrangements of myelin sheath ultrastructure. Mature oligodendrocytes decreased and oligodendrocyte precursors increased in the absence of astrogliosis or microgliosis. In medial prefrontal and somatosensory cortices of juvenile VPA rats, myelin ultrastructure and oligodendroglial lineage were preserved. VPA animals exhibited global brain hypometabolism and local hypermetabolism in brain regions relevant for ASD. In turn, the CC of infant VPA rats showed reduced myelin content but preserved oligodendroglial lineage. Our findings indicate that CC hypomyelination is established during infancy and prior to oligodendroglial pattern alterations, which suggests that axon-oligodendroglia communication could be compromised in VPA animals. Thus, CC hypomyelination may underlie white matter alterations and contribute to atypical patterns of connectivity and metabolism found in ASD.


Assuntos
Transtorno do Espectro Autista/metabolismo , Corpo Caloso/metabolismo , Rede Nervosa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Comportamento Social , Ácido Valproico/toxicidade , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar , Tomografia Computadorizada de Emissão de Fóton Único/métodos
9.
Glia ; 69(1): 151-164, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818301

RESUMO

The current study presents two different approaches with a view to elucidating the interaction between thyroid hormones (TH) and apo-transferrin (aTf) and their role in myelination and remyelination. First, in vitro assays were conducted to determine the single and combined effects of aTf and triiodothyronine (T3) on oligodendroglial cell lineage proliferation and oligodendrocyte (OLG) maturation in primary cultures. Results revealed higher proliferation rates upon single aTf treatment but Control values upon T3 and aTf + T3 treatments. In addition, both aTf and T3 accelerated OLG maturation, with the greatest effects being exerted by combined aTf + T3 administration in terms of both myelin basic protein (MBP) expression and morphological complexity. Second, in vivo assays were carried out to establish single and combined effects of aTf and T3, as well as TH receptor (THR) inhibitor I-850, on remyelination following a CPZ-induced demyelination protocol. Results showed an increase in myelin deposition and the number of mature remyelinating OLG upon single treatments, but a synergic effect upon combined aTf + T3 treatment which was prevented by THR inhibition. It may be thus concluded that combined treatment yielded the most beneficial effects on OLG maturation parameters in vitro and remyelinating capacity in vivo when compared to single treatments. These findings may help explore the development of new target molecules in the treatment of demyelinating diseases.


Assuntos
Remielinização , Diferenciação Celular , Bainha de Mielina , Oligodendroglia , Hormônios Tireóideos , Transferrina
10.
ASN Neuro ; 12: 1759091420962681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32993319

RESUMO

Iron is a key nutrient for normal central nervous system (CNS) development and function; thus, iron deficiency as well as iron excess may result in harmful effects in the CNS. Oligodendrocytes and astrocytes are crucial players in brain iron equilibrium. However, the mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes during CNS development or under pathological situations such as demyelination are not completely understood. In the CNS, iron is directly required for myelin production as a cofactor for enzymes involved in ATP, cholesterol and lipid synthesis, and oligodendrocytes are the cells with the highest iron levels in the brain which is linked to their elevated metabolic needs associated with the process of myelination. Unlike oligodendrocytes, astrocytes do not have a high metabolic requirement for iron. However, these cells are in close contact with blood vessel and have a strong iron transport capacity. In several pathological situations, changes in iron homoeostasis result in altered cellular iron distribution and accumulation and oxidative stress. In inflammatory demyelinating diseases such as multiple sclerosis, reactive astrocytes accumulate iron and upregulate iron efflux and influx molecules, which suggest that they are outfitted to take up and safely recycle iron. In this review, we will discuss the participation of oligodendrocytes and astrocytes in CNS iron homeostasis. Understanding the molecular mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes is necessary for planning effective strategies for iron management during CNS development as well as for the treatment of demyelinating diseases.


Assuntos
Astrócitos/metabolismo , Ferro/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Animais , Astrócitos/patologia , Humanos , Bainha de Mielina/patologia , Oligodendroglia/patologia
11.
J Neurochem ; 155(3): 327-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32248519

RESUMO

Previous work by our group has shown the pro-differentiating effects of apotransferrin (aTf) on oligodendroglial cells in vivo and in vitro. Further studies showed the remyelinating effect of aTf in animal demyelination models such as hypoxia/ischemia, where the intranasal administration of human aTf provided brain neuroprotection and reduced white matter damage, neuronal loss, and astrogliosis in different brain regions. These data led us to search for a less invasive and controlled technique to deliver aTf to the CNS. To such end, we isolated extracellular vesicles (EVs) from human and mouse plasma and different neuron and glia conditioned media and characterized them based on their quality, quantity, identity, and structural integrity by western blot, dynamic light scattering, and scanning electron microscopy. All sources yielded highly pure vesicles whose size and structures were in keeping with previous literary evidence. Given that, remarkably, EVs from all sources analyzed contained Tf receptor 1 (TfR1) in their composition, we employed two passive cargo-loading strategies which rendered successful EV loading with aTf, specifically through binding to TfR1. These results unveil EVs as potential nanovehicles of aTf to be delivered into the CNS parenchyma, and pave the way for further studies into their possible clinical application in the treatment of demyelinating diseases.


Assuntos
Apoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Adulto , Animais , Apoproteínas/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar , Receptores da Transferrina/administração & dosagem , Transferrina/administração & dosagem
12.
Glia ; 67(9): 1760-1774, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162719

RESUMO

Developmental iron deficiency (dID) models facilitate the study of specific oligodendrocyte (OL) requirements for their progression to a mature state and subsequent contribution to myelination. In the current work, we used the dID model in transgenic mice expressing green fluorescence protein under the CNPase promoter allowing the identification of cells belonging to the oligodendroglial lineage, and the visualization of the entire myelin structure and single OL morphology. The present work evaluates dID effects on OL complexity in different brain areas. Control animals showed an increase in OL complexity both during development and along the anterior-posterior axis. In contrast, dID animals exhibited an initial increase in CNPase+ cells with prevalence of immature-OL (i-OL), an effect later compensated during development by selective death of those i-OL. As a consequence, developmental behavior was impaired in terms of body balance, muscle response, and sensorimotor functions. To explore why i-OL fail to mature in dID, expression levels of transcriptional factors involved in the maturation of the OL lineage were studied. In nuclear fractions, dID animals showed an increase in Hes5, which prevents the maturation of i-OL, and a decrease in Sox10, a positive regulator of OL maturation. The cytoplasmic fractions showed a decrease in Olig1, which is critical for precursor cell differentiation into premyelinating OL. Overall, the expression levels of Hes5, Sox10, and Olig1 in dID conditions correlated with an unfavorable OL maturation profile. In sum, the current results provide further evidence of dID impact on myelination, keeping OL away from the maturational path.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/metabolismo , Oligodendroglia/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Gravidez
14.
Mol Neurobiol ; 56(9): 6324-6340, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30758712

RESUMO

Transferrin (Tf) is a glycoprotein playing a critical role in iron homeostasis and transport and distribution throughout the body and within tissues and cells. This molecule has been shown to accelerate the process of myelination and remyelination in the central nervous system (CNS) in vivo and induce oligodendroglial cell maturation in vitro. While the mechanisms involved in oligodendroglial precursor cell (OPC) differentiation have not been fully elucidated yet, our group has previously described the first molecular events taking place in OPC in response to extracellular Tf. Here, we show the effect of Tf on the different glial cell populations. We demonstrate that, after a CNS demyelinating injury, Tf can be incorporated by all glial cells-i.e., microglia, astrocytes, and OPC-and that, acting on microglial cells in vitro, Tf increases microglial proliferation rates and phagocytic capacity. It may be then speculated that the in vivo correlation of this process could generate a favorable microenvironment for OPC maturation and remyelination.


Assuntos
Microglia/citologia , Microglia/metabolismo , Fagocitose , Transferrina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cuprizona , Doenças Desmielinizantes/patologia , Humanos , Microglia/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fagocitose/efeitos dos fármacos , Ratos Wistar , Receptores da Transferrina/metabolismo , Transferrina/farmacologia
15.
Glia ; 67(2): 291-308, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456797

RESUMO

Multiple sclerosis (MS) is one of the most common causes of progressive disability affecting young people with very few therapeutic options available for its progressive forms. Its pathophysiology involves demyelination and neurodegeneration apparently driven by microglial activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In the present work, we used microglial modulation through oral administration of brain-penetrant CSF-1R inhibitor BLZ945 in acute and chronic cuprizone (CPZ)-induced demyelination to evaluate preventive and therapeutic effects on de/remyelination and neurodegeneration. Our results show that BLZ945 induced a significant reduction in the number of microglia. Preventive BLZ945 treatment attenuated demyelination in the acute CPZ model, mainly in cortex and external capsule. In contrast, BLZ945 treatment in the acute CPZ model failed to protect myelin or foster remyelination in myelin-rich areas, which may respond to a loss in microglial phagocytic capacity and the consequent impairment in oligodendroglial differentiation. Preventive and therapeutic BLZ945 treatment promoted remyelination and neuroprotection in the chronic model. These results could be potentially transferred to the treatment of progressive forms of MS.


Assuntos
Doenças Desmielinizantes/metabolismo , Microglia/metabolismo , Receptores de Fator Estimulador de Colônias/antagonistas & inibidores , Receptores de Fator Estimulador de Colônias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Benzotiazóis/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Bromodesoxiuridina/metabolismo , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ácidos Picolínicos/uso terapêutico , Receptores de Fator Estimulador de Colônias/genética , Fatores de Tempo
16.
J Neuroendocrinol ; 30(11): e12649, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30303567

RESUMO

Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3ß-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.


Assuntos
Encéfalo/enzimologia , Encéfalo/metabolismo , Bainha de Mielina/enzimologia , Bainha de Mielina/metabolismo , Remielinização , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Cuprizona/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/enzimologia , Esclerose Múltipla/metabolismo , Bainha de Mielina/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/enzimologia , Neuroglia/metabolismo , Fosfoproteínas/metabolismo , Receptores de GABA/metabolismo , Remielinização/efeitos dos fármacos , Canal de Ânion 1 Dependente de Voltagem/metabolismo
17.
J Neurosci ; 38(43): 9142-9159, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30190412

RESUMO

The divalent metal transporter 1 (DMT1) is a multimetal transporter with a primary role in iron transport. Although DMT1 has been described previously in the CNS, nothing was known about the role of this metal transporter in oligodendrocyte maturation and myelination. To determine whether DMT1 is required for oligodendrocyte progenitor cell (OPC) maturation, we used siRNAs and the Cre-lox system to knock down/knock out DMT1 expression in vitro as well as in vivo Blocking DMT1 synthesis in primary cultures of OPCs reduced oligodendrocyte iron uptake and significantly delayed OPC development. In vivo, a significant hypomyelination was found in DMT1 conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive OPCs. The brain of DMT1 knock-out animals presented a decrease in the expression levels of myelin proteins and a substantial reduction in the percentage of myelinated axons. This reduced postnatal myelination was accompanied by a decrease in the number of myelinating oligodendrocytes and a rise in proliferating OPCs. Furthermore, using the cuprizone model of demyelination, we established that DMT1 deletion in NG2-positive OPCs lead to less efficient remyelination of the adult brain. These results indicate that DMT1 is vital for OPC maturation and for the normal myelination of the mouse brain.SIGNIFICANCE STATEMENT To determine whether divalent metal transporter 1 (DMT1), a multimetal transporter with a primary role in iron transport, is essential for oligodendrocyte development, we created two conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive oligodendrocyte progenitor cells (OPCs). We have established that DMT1 is necessary for normal OPC maturation and is required for an efficient remyelination of the adult brain. Since iron accumulation by OPCs is indispensable for myelination, understanding the iron incorporation mechanism as well as the molecules involved is critical to design new therapeutic approaches to intervene in diseases in which the myelin sheath is damaged or lost.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Ferro/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Distribuição Aleatória
18.
Mol Neurobiol ; 55(2): 1068-1081, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28092084

RESUMO

When disrupted, iron homeostasis negatively impacts oligodendrocyte (OLG) differentiation and impairs myelination. To better understand myelin formation and OLG maturation, in vivo and in vitro studies were conducted to evaluate the effect of iron deficiency (ID) not only on OLG maturation but also on astrocytes (AST) and microglial cells (MG). In vivo experiments in an ID model were carried out to describe maturational events during OLG and AST development and the reactive profile of MG during myelination when iron availability is lower than normal. In turn, in vitro assays were conducted to explore proliferating and maturational states of each glial cell type derived from control or ID conditions. Studies targeted NG2, PDGFRα, CNPAse, CC1, and MBP expression in OLG, GFAP and S100 expression in AST, and CD11b, ED1, and cytokine expression in MG, as well as BrDU incorporation in the three cell types. Our results show that ID affected OLG development at early stages, not only reducing their maturation capacity but also increasing their proliferation and affecting their morphological complexity. AST ID proliferated more than control ones and were more immature, much like OLG. Cytokine expression in ID animals reflected an anti-inflammatory state which probably influenced OLG maturation. These results show that ID conditions alter all glial cells and may impact myelin formation, which could be regulated by a mechanism involving a cross talk between AST, MG, and oligodendrocyte progenitors (OPC).


Assuntos
Anemia Ferropriva/metabolismo , Astrócitos/metabolismo , Ferro/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Bainha de Mielina/metabolismo , Ratos , Ratos Wistar
19.
Proteomics ; 17(17-18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28762254

RESUMO

Prenatal iron deficiency (pID) has been described to increase the risk for neurodevelopmental disorders such as autism and schizophrenia; however, the precise molecular mechanisms are still unknown. Here, we utilized high-throughput MS to examine the proteomic effects of pID in adulthood on the rat frontal cortex area (FCA). In addition, the FCA proteome was examined in adulthood following risperidone treatment in adolescence to see if these effects could be prevented. We identified 1501 proteins of which 100 were significantly differentially expressed in the FCA at postnatal day 90. Pathway analysis of proteins affected by pID revealed changes in metabolic processes, including the tricyclic acid cycle, mitochondrial dysfunction, and P13K/Akt signaling. Interestingly, most of these protein changes were not present in the adult pID offspring who received risperidone in adolescence. Considering the link between pID and several neurodevelopmental disorders such as autism and schizophrenia these presented results bring new perspectives to understand the role of iron in metabolic pathways and provide novel biomarkers for future studies of pID.


Assuntos
Antipsicóticos/farmacologia , Lobo Frontal/metabolismo , Deficiências de Ferro , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Proteoma/análise , Risperidona/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Lobo Frontal/efeitos dos fármacos , Ferro/metabolismo , Espectrometria de Massas , Gravidez , Proteômica , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
20.
J Comp Neurol ; 525(13): 2861-2875, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512739

RESUMO

It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1-/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1-/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.


Assuntos
Axônios/metabolismo , Benzamidas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Locomoção/fisiologia , Medula Espinal/citologia , Medula Espinal/embriologia , Tirosina/análogos & derivados , Animais , Axônios/ultraestrutura , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Genótipo , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Desempenho Psicomotor/fisiologia , Teste de Desempenho do Rota-Rod , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA