Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 265(Pt A): 114801, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806404

RESUMO

Soil anthropogenic contaminants can limit enzymatic nutrient mineralization, either by direct regulation or via impacts on the microbial community, thus affecting plant growth in agricultural and non-agricultural soils. The impact on phosphatase activity of mixing two contaminated, post-industrial rail yard soils was investigated; one was vegetated and had high phosphatase function, the other was barren and had low enzymatic function. The two soils had different abiotic properties, including contaminant load, vegetation cover, soil aggregate size distribution, and phosphatase potential. An experimental gradient was established between the two soils to systematically vary the abiotic properties and microbial community composition of the two soils, creating a gradient of novel ecosystems. The time dependence of extracellular phosphatase activity, soil moisture, and organic matter content was assessed along this gradient in the presence and absence of plants. Initially, mixtures with higher percentages of functional, vegetated soil had higher phosphatase activities. Phosphatase activity remained unchanged through time (65 days) in all soil mixtures in unplanted pots, but it increased in planted pots. For example, in the presence of plants, phosphatase activity increased from 0.6 ± 0.1 to 2.4 ± 0.3 µmol•h-1•gdry soil-1 from day one to day 65 in the 1:1 functional:barren soil mixture. The presence of plants also promoted moisture retention. Inoculation of poorly functioning soil with 10% of the functional soil with its microbial community did not, over 65 days, revitalize the poorly functioning soil. The findings showed that abiotic limitations to enzymatic activity in barren brownfield soils could be mitigated by establishing primary production but not by the addition of enzymatically active microbial communities alone.


Assuntos
Microbiologia do Solo , Solo , Metais , Monoéster Fosfórico Hidrolases , Plantas
2.
Nat Commun ; 9(1): 2742, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992953

RESUMO

The original version of this Article contained an error in the spelling of the author Florence Colleoni, which was incorrectly given as Florence Colloni. This has been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 2289, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915266

RESUMO

Understanding how the Antarctic ice sheet will respond to global warming relies on knowledge of how it has behaved in the past. The use of numerical models, the only means to quantitatively predict the future, is hindered by limitations to topographic data both now and in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological processes interact. Incorporating the variety and interplay of such processes, operating at multiple spatio-temporal scales, is critical to modeling the Antarctic's system evolution and requires direct observations in challenging locations. As these processes do not observe disciplinary boundaries neither should our future research.

4.
Nat Commun ; 9(1): 317, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358604

RESUMO

Observations and model experiments highlight the importance of ocean heat in forcing ice sheet retreat during the present and geological past, but past ocean temperature data are virtually missing in ice sheet proximal locations. Here we document paleoceanographic conditions and the (in)stability of the Wilkes Land subglacial basin (East Antarctica) during the mid-Miocene (~17-13.4 million years ago) by studying sediment cores from offshore Adélie Coast. Inland retreat of the ice sheet, temperate vegetation, and warm oligotrophic waters characterise the mid-Miocene Climatic Optimum (MCO; 17-14.8 Ma). After the MCO, expansion of a marine-based ice sheet occurs, but remains sensitive to melting upon episodic warm water incursions. Our results suggest that the mid-Miocene latitudinal temperature gradient across the Southern Ocean never resembled that of the present day. We demonstrate that a strong coupling of oceanic climate and Antarctic continental conditions existed and that the East Antarctic subglacial basins were highly sensitive to ocean warming.

5.
Science ; 340(6130): 341-4, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599491

RESUMO

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Assuntos
Adaptação Fisiológica , Dinoflagellida/fisiologia , Ecossistema , Camada de Gelo , Oceanos e Mares , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Regiões Antárticas , Temperatura Baixa , Fósseis
6.
Nature ; 474(7349): 46-7, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21637252
7.
Nature ; 460(7253): 376-9, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606146

RESUMO

Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.


Assuntos
Clima Frio , Diatomáceas/isolamento & purificação , Camada de Gelo/química , Camada de Gelo/microbiologia , Regiões Árticas , Diatomáceas/química , Diatomáceas/ultraestrutura , Fósseis , Sedimentos Geológicos/microbiologia , História Antiga , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oceanos e Mares , Análise de Componente Principal , Salinidade , Água do Mar/química , Dióxido de Silício/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA