RESUMO
INTRODUCTION: As digital health expands, reliance on digital endpoints is rapidly increasing to improve diagnostic accuracy and management in the healthcare field. Digital endpoints are beneficial to monitor how patient's clinical information is processed outside of a clinical setting. AREAS COVERED: Implications of cardiac digital endpoints play a role in allowing patients to track their clinical data outside of a clinical setting. Advances in cardiac digital endpoints involve advanced devices and implants, trackers, and artificial intelligence. We will explore further digital endpoints within cardiology and threats as well as security concerns for policies to focus on the maintenance of safe patient health data analysis, transmission, and processing. EXPERT OPINION: As digital endpoints evolve and expand, policymakers must ensure there is adequate cybersecurity surrounding them. We believe guidelines should be in place to make sure data is accessed solely on a secure connection and access to digital literacy for patients should be readily available.
Assuntos
Segurança Computacional , Humanos , Inteligência ArtificialRESUMO
Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.
Assuntos
Compostos Azo , Nanopartículas Metálicas , Micrococcus luteus , Prata , Prata/química , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/metabolismo , Micrococcus luteus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Difração de Raios X , Poluentes Químicos da Água/metabolismo , Corantes/química , Corantes/farmacologiaRESUMO
Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation. Stat3-deficient HSPCs were significantly impaired in reconstitution ability following primary or secondary bone marrow transplantation, indicating hematopoietic stem cell (HSC) defects. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells (LSKs) revealed aberrant activation of cell cycle, p53, and interferon (IFN) pathways in Stat3-deficient HSPCs. Stat3-deficient LSKs accumulated γH2AX and showed increased expression of DNA sensors and type-I IFN (IFN-I), while treatment with A151-ODN inhibited expression of IFN-I and IFN-responsive genes. Further, the blockade of IFN-I receptor signaling suppressed aberrant cell cycling, STAT1 activation, and nuclear p53 accumulation. Collectively, our results show that STAT3 inhibits a deleterious autocrine IFN response in HSCs to maintain long-term HSC function. These data signify the importance of ensuring therapeutic STAT3 inhibitors are targeted specifically to diseased cells to avoid off-target loss of healthy HSPCs.
Assuntos
Comunicação Autócrina , Células-Tronco Hematopoéticas , Interferon Tipo I , Fator de Transcrição STAT3 , Animais , Fator de Transcrição STAT3/metabolismo , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Invasive mechanical ventilation allows clinicians to support gas exchange and work of breathing in patients with respiratory failure. However, there is also potential for iatrogenesis. By understanding the benefits and limitations of different modes of ventilation and goals for gas exchange, clinicians can choose a strategy that provides appropriate support while minimizing harm. The ventilator can also provide crucial diagnostic information in the form of respiratory mechanics. These, and the mechanical ventilation strategy, should be regularly reassessed.
Assuntos
Respiração Artificial , Mecânica Respiratória , HumanosRESUMO
The magnetic structure of K2Co3(MoO4)3(OH)2 is studied in detail. The material has a half-sawtooth one-dimensional (1-D) structure containing two unique Co2+ ions, one in the chain backbone and one on the apex of the sawtooth creating a series of isosceles triangles along the b-axis. These triangles can be a source of magnetic frustration. The ability to grow large single crystals enables detailed magnetic measurements with the crystals oriented in a magnetic field along the respective axes. It has a Curie-Weiss temperature θCW of 5.3(2) K with an effective magnetic moment of 4.8(3)µB/Co. The material is highly anisotropic with a sharp antiferromagnetic ordering transition at 7 K with a metamagnetic transition at 2 kOe. Neutron diffraction was used to determine the magnetic structure and revealed a magnetic structure with canted spins along the backbone of the chain while spins along the sawtooth caps maintained a colinear orientation, arranging antiferromagnetically relative to the backbone spins. The parallel chains arrange antiferromagnetically relative to each other along the c-axis and ferromagnetically along the a-axis.
RESUMO
Phytonanofabrication is one of the most promising areas that has drawn the attention of scientists worldwide due to its eco-friendly nature and biocompatibility. In the current investigation, we reported the phyto-assisted formation of iron oxide nanoparticles (IONPs) from a rare species of Acacia (Acacia jacquemontii). First, ethanolic extracts of the stem powder were analyzed by high-performance thin-layer chromatography (HPTLC) for the identification of phytochemicals in the stem sections of Acacia. Furthermore, IONPs were synthesized by a chemical co-precipitation method by using the stem extract. The phytonanofabricated iron oxide particles were investigated by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Energy-dispersive X-ray spectroscopy (EDS) for elemental analysis. HPTLC confirmed the presence of several phenols and terpenoids in the ethanolic extracts of the stem. UV-Vis spectroscopy exhibited an absorbance peak at 380 nm, indicating the formation of IONPs, while FTIR spectroscopy showed the typical bands for Fe-O in the range of 599-1,000 cm-1 in addition to several functional groups of organic molecules at 1,596 cm-1, 2,313 cm-1, and 3,573 cm-1. XRD exhibits the amorphous nature of IONPs with peaks at 30.7, 35.5, and 62.7 nm. The IONPs were spherical-shaped, whose size varies from 10 to 70 nm, as confirmed by FESEM. EDS exhibited the presence of Fe, O, C, and NaCl. Finally, the phytonanofabricated iron oxide particles were utilized for the removal of brilliant green (BG) and Congo red (CR) dye from the aqueous solution. The removal efficiency of BG dye was up to 54.28%, while that of Congo red dye was up to 36.72% in 120 min and 60 min, respectively. Furthermore, the effect of pH and contact time was also assessed on both the dyes, where CR exhibited maximum removal at acidic pH, i.e., 47.5%, while BG showed maximum removal at pH 10, i.e., 76.59%.
RESUMO
Background: Osteoarthritis (OA) is a debilitating joints disease affecting millions of people worldwide. As OA progresses, chondrocytes experience heightened catabolic activity, often accompanied by alterations in the extracellular environment's osmolarity and acidity. Nevertheless, the precise mechanism by which chondrocytes perceive and respond to acidic stress remains unknown. Recently, there has been growing interest in pH-sensing G protein-coupled receptors (GPCRs), such as GPR68, within musculoskeletal tissues. However, function of GPR68 in cartilage during OA progression remains unknown. This study aims to identify the role of GPR68 in regulation of catabolic gene expression utilizing an in vitro model that simulates catabolic processes in OA. Methods: We examined the expression of GPCR by analyzing high throughput RNA-Seq data in human cartilage isolated from healthy donors and OA patients. De-identified and discarded OA cartilage was obtained from joint arthroplasty and chondrocytes were prepared by enzymatic digestion. Chondrocytes were treated with GPR68 agonist, Ogerin and then stimulated IL1ß and RNA isolation was performed using Trizol method. Reverse transcription was done using the cDNA synthesis kit and the expression of GPR68 and OA related catabolic genes was quantified using SYBR® green assays. Results: The transcriptome analysis revealed that pH sensing GPCR were expressed in human cartilage with a notable increase in the expression of GPR68 in OA cartilage which suggest a potential role for GPR68 in the pathogenesis of OA. Immunohistochemical (IHC) and qPCR analyses in human cartilage representing various stages of OA indicated a progressive increase in GPR68 expression in cartilage associated with higher OA grades, underscoring a correlation between GPR68 expression and the severity of OA. Furthermore, IHC analysis of Gpr68 in murine cartilage subjected to surgically induced OA demonstrated elevated levels of GPR68 in knee cartilage and meniscus. Using IL1ß stimulated in vitro model of OA catabolism, our qPCR analysis unveiled a time-dependent increase in GPR68 expression in response to IL1ß stimulation, which correlates with the expression of matrix degrading proteases suggesting the role of GPR68 in chondrocytes catabolism and matrix degeneration. Using pharmacological activator of GPR68, our results further showed that GPR68 activation repressed the expression of MMPs in human chondrocytes. Conclusions: Our results demonstrated that GPR68 was robustly expressed in human cartilage and mice and its expression correlates with matrix degeneration and severity of OA progression in human and surgical model. GPR68 activation in human chondrocytes further repressed the expression of MMPs under OA pathological condition. These results identify GPR68 as a possible therapeutic target in the regulation of matrix degradation during OA.
Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Animais , Camundongos , Cartilagem Articular/metabolismo , Osteoartrite/genética , Matriz Extracelular/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Ligação ao GTP/metabolismo , Concentração de Íons de HidrogênioRESUMO
Carbon monoxide (CO) poisoning accounts for over 50,000 estimated emergency room visits and approximately 1200 deaths per year in the US. Despite the high prevalence, there is a paucity of data looking at the association between laboratory biomarkers and clinical outcomes. Our study investigates the association between myocardial injury as assessed by increased troponin levels and its effect on in-hospital outcomes in CO poisoning. A total of 900 sequential charts of patients presenting with CO poisoning between 1 January 2012, and 31 August 2019, at our tertiary center with regional hyperbaric chamber and burn unit, were reviewed. Of the 900, a total of 488 patients had elevated carboxyhemoglobin levels. Of these 488 patients, 119 (24.4%) also had blood troponin levels measured. Patients were stratified based on the presence or absence of myocardial injury as evidenced by highly sensitive serum troponin I (TnI) level > 0.5 ng/mL to determine if a correlation exists relating to myocardial injury and risk of major adverse events. Mean age was 51.2 years, 58.8% were males, 35.3% were non-White, and 10.1% were intentional CO poisonings. Comorbidities included hypertension: 37%, diabetes: 21%, smoking: 21%, hyperlipidemia: 17.6%, coronary artery disease: 11.8%, asthma: 5.9%, heart failure: 5%, atrial fibrillation: 4.2%, and chronic obstructive pulmonary disease: 4.2%. Myocardial injury occurred in 22 patients (18.5%) and was associated with increased likelihood of requiring intensive care admission (54.5% vs. 20.6%, p = 0.002) and intubation (40.9% vs. 14.4%, p = 0.008). TnI elevation was associated with higher in-hospital mortality (p = 0.008, OR 21.3) compared to patients without TnI elevation. Older age was independently associated with increased in-hospital mortality (p = 0.03, OR 1.08). When controlling for age, in-hospital mortality remained statistically significant (p = 0.01, OR 21.37). No significant difference was found with respect to age, comorbidities, gender, race, ethnicity, or hospital length of stay in patients with and without myocardial injury. Myocardial injury induced by CO exposure occurs frequently and adversely affects clinical outcomes. Further research is needed to help guide physicians in the management of CO poisoning and associated myocardial injury to improve patient outcomes.
RESUMO
OBJECTIVES: To identify cytokine signature clusters in patients with septic shock. DESIGN: Prospective observational cohort study. SETTING: Single academic center in the United States. PATIENTS: Adult (≥ 18 yr old) patients admitted to the medical ICU with septic shock requiring vasoactive medication support. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: One hundred fourteen patients with septic shock completed cytokine measurement at time of enrollment (t 1 ) and 24 hours later (t 2 ). Unsupervised random forest analysis of the change in cytokines over time, defined as delta (t 2 -t 1 ), identified three clusters with distinct cytokine profiles. Patients in cluster 1 had the lowest initial levels of circulating cytokines that decreased over time. Patients in cluster 2 and cluster 3 had higher initial levels that decreased over time in cluster 2 and increased in cluster 3. Patients in clusters 2 and 3 had higher mortality compared with cluster 1 (clusters 1-3: 11% vs 31%; odds ratio [OR], 3.56 [1.10-14.23] vs 54% OR, 9.23 [2.89-37.22]). Cluster 3 was independently associated with in-hospital mortality (hazard ratio, 5.24; p = 0.005) in multivariable analysis. There were no significant differences in initial clinical severity scoring or steroid use between the clusters. Analysis of either t 1 or t 2 cytokine measurements alone or in combination did not reveal clusters with clear clinical significance. CONCLUSIONS: Longitudinal measurement of cytokine profiles at initiation of vasoactive medications and 24 hours later revealed three distinct cytokine signature clusters that correlated with clinical outcomes.
Assuntos
Choque Séptico , Adulto , Humanos , Estados Unidos/epidemiologia , Estudos Prospectivos , CitocinasRESUMO
Background: Pulmonary fibrosis is characterized by lung parenchymal destruction and can increase morbidity and mortality. Pulmonary fibrosis commonly occurs following hospitalization for SARS-CoV-2 infection. As there are medications that modify pulmonary fibrosis risk, we investigated whether distinct pharmacotherapies (amiodarone, cancer chemotherapy, corticosteroids, and rituximab) are associated with differences in post-COVID-19 pulmonary fibrosis incidence. Methods: We used the National COVID-19 Cohort Collaboration (N3C) Data Enclave, which aggregates and harmonizes COVID-19 data across the United States, to assess pulmonary fibrosis incidence documented at least 60 days after COVID-19 diagnosis among adults hospitalized between January 1st, 2020 and July 6th, 2022 without pre-existing pulmonary fibrosis. We used propensity scores to match pre-COVID-19 drug-exposed and unexposed cohorts (1:1) based on covariates with known influence on pulmonary fibrosis incidence, and estimated the association of drug exposure with risk for post-COVID-19 pulmonary fibrosis. Sensitivity analyses considered pulmonary fibrosis incidence documented at least 30- or 90-days post-hospitalization and pulmonary fibrosis incidence in the COVID-19-negative N3C population. Findings: Among 5,923,394 patients with COVID-19, we analyzed 452,951 hospitalized adults, among whom pulmonary fibrosis incidence was 1.1 per 100-person-years. 277,984 hospitalized adults with COVID-19 were included in our primary analysis, among whom all drug exposed cohorts were well-matched to unexposed cohorts (standardized mean differences <0.1). The post-COVID-19 pulmonary fibrosis incidence rate ratio (IRR) was 2.5 (95% CI 1.2-5.1, P = 0.01) for rituximab, 1.6 (95% CI 1.3-2.0, P < 0.0001) for chemotherapy, and 1.2 (95% CI 1.0-1.3, P = 0.02) for corticosteroids. Amiodarone exposure had no significant association with post-COVID-19 pulmonary fibrosis (IRR = 0.8, 95% CI 0.6-1.1, P = 0.24). In sensitivity analyses, pre-COVID-19 corticosteroid use was not consistently associated with post-COVID-19 pulmonary fibrosis. In the COVID-19 negative hospitalized population (n = 1,240,461), pulmonary fibrosis incidence was lower overall (0.6 per 100-person-years) and for patients exposed to all four drugs. Interpretation: Recent rituximab or cancer chemotherapy before COVID-19 infection in hospitalized patients is associated with increased risk for post-COVID-19 pulmonary fibrosis. Funding: The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v1.2-2020-08-25b supported by NIHK23HL146942, NIHK08HL150291, NIHK23HL148387, NIHUL1TR002389, NCATSU24 TR002306, and a SECURED grant from the Walder Foundation/Center for Healthcare Delivery Science and Innovation, University of Chicago. WFP received a grant from the Greenwall Foundation. This research was possible because of the patients whose information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who have contributed to the on-going development of this community resource (https://doi.org/10.1093/jamia/ocaa196).
RESUMO
The aim of these guidelines is to update the 2017 clinical practice guideline (CPG) of the European Society of Intensive Care Medicine (ESICM). The scope of this CPG is limited to adult patients and to non-pharmacological respiratory support strategies across different aspects of acute respiratory distress syndrome (ARDS), including ARDS due to coronavirus disease 2019 (COVID-19). These guidelines were formulated by an international panel of clinical experts, one methodologist and patients' representatives on behalf of the ESICM. The review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations and the quality of reporting of each study based on the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network guidelines. The CPG addressed 21 questions and formulates 21 recommendations on the following domains: (1) definition; (2) phenotyping, and respiratory support strategies including (3) high-flow nasal cannula oxygen (HFNO); (4) non-invasive ventilation (NIV); (5) tidal volume setting; (6) positive end-expiratory pressure (PEEP) and recruitment maneuvers (RM); (7) prone positioning; (8) neuromuscular blockade, and (9) extracorporeal life support (ECLS). In addition, the CPG includes expert opinion on clinical practice and identifies the areas of future research.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Adulto , Humanos , COVID-19/terapia , Respiração Artificial , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Cuidados CríticosRESUMO
BACKGROUND: Inpatient telemetry heart rhythm monitoring overuse has been linked to higher healthcare costs. AIM: To evaluate if CHA2DS2-VASc score could be used to indicate if a patient admitted with possible cerebrovascular accident (CVA) or transient ischemic attack (TIA) requires inpatient telemetry monitoring. METHODS: A total of 257 patients presenting with CVA or TIA and placed on telemetry monitoring were analyzed retrospectively. We investigated the utility of telemetry monitoring to diagnose atrial fibrillation/flutter and the CHA2DS2-VASc scoring tool to stratify the risk of having CVA/TIA in these patients. RESULTS: In our study population, 63 (24.5%) of the patients with CVA/TIA and telemetry monitoring were determined to have no ischemic neurologic event. Of the 194 (75.5) patients that had a confirmed CVA/TIA, only 6 (2.3%) had an arrhythmia detected during their inpatient telemetry monitoring period. Individuals with a confirmed CVA/TIA had a statistically significant higher CHA2DS2-VASc score compared to individuals without an ischemic event (3.59 vs 2.61, P < 0.001). CONCLUSION: Given the low percentage of inpatient arrhythmias identified, further research should focus on discretionary use of inpatient telemetry on higher risk patients to diagnose the arrhythmias commonly leading to CVA/TIA. A prospective study assessing event rate of CVA/TIA in patients with higher CHA2DS2-VASc score should be performed to validate the CHA2DS2-VASc score as a possible risk stratifying tool for patients at risk for CVA/TIA.
RESUMO
STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as Stat3 deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated Stat3 deletion in 20% of the hematopoietic compartment. Stat3-deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to Stat3-sufficient (CreER) controls. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells revealed altered transcriptional responses in Stat3-deficient hematopoietic stem cells (HSCs) and multipotent progenitors, including intrinsic activation of cell cycle, stress response, and interferon signaling pathways. Consistent with their deregulation, Stat3-deficient Lin-ckit+Sca1+ cells accumulated γH2AX over time. Following secondary BM transplantation, Stat3-deficient HSPCs failed to reconstitute peripheral blood effectively, indicating a severe functional defect in the HSC compartment. Our results reveal essential roles for STAT3 in HSCs and suggest the potential for using targeted synthetic lethal approaches with STAT3 inhibition to remove defective or diseased HSPCs.
RESUMO
BACKGROUND: Patients who have received mechanical ventilation can have prolonged cognitive impairment for which there is no known treatment. We aimed to establish whether early mobilisation could reduce the rates of cognitive impairment and other aspects of disability 1 year after critical illness. METHODS: In this single-centre, parallel, randomised controlled trial, patients admitted to the adult medical-surgical intensive-care unit (ICU), at the University of Chicago (IL, USA), were recruited. Inclusion criteria were adult patients (aged ≥18 years) who were functionally independent and mechanically ventilated at baseline and within the first 96 h of mechanical ventilation, and expected to continue for at least 24 h. Patients were randomly assigned (1:1) via computer-generated permuted balanced block randomisation to early physical and occupational therapy (early mobilisation) or usual care. An investigator designated each assignment in consecutively numbered, sealed, opaque envelopes; they had no further involvement in the trial. Only the assessors were masked to group assignment. The primary outcome was cognitive impairment 1 year after hospital discharge, measured with a Montreal Cognitive Assessment. Patients were assessed for cognitive impairment, neuromuscular weakness, institution-free days, functional independence, and quality of life at hospital discharge and 1 year. Analysis was by intention to treat. This trial was registered with ClinicalTrials.gov, number NCT01777035, and is now completed. FINDINGS: Between Aug 11, 2011, and Oct 24, 2019, 1222 patients were screened, 200 were enrolled (usual care n=100, intervention n=100), and one patient withdrew from the study in each group; thus 99 patients in each group were included in the intention-to-treat analysis (113 [57%] men and 85 [43%] women). 65 (88%) of 74 in the usual care group and 62 (89%) of 70 in the intervention group underwent testing for cognitive impairment at 1 year. The rate of cognitive impairment at 1 year with early mobilisation was 24% (24 of 99 patients) compared with 43% (43 of 99) with usual care (absolute difference -19·2%, 95% CI -32·1 to -6·3%; p=0·0043). Cognitive impairment was lower at hospital discharge in the intervention group (53 [54%] 99 patients vs 68 [69%] 99 patients; -15·2%, -28·6 to -1·7; p=0·029). At 1 year, the intervention group had fewer ICU-acquired weaknesses (none [0%] of 99 patients vs 14 [14%] of 99 patients; -14·1%; -21·0 to -7·3; p=0·0001) and higher physical component scores on quality-of-life testing than did the usual care group (median 52·4 [IQR 45·3-56·8] vs median 41·1 [31·8-49·4]; p<0·0001). There was no difference in the rates of functional independence (64 [65%] of 99 patients vs 61 [62%] of 99 patients; 3%, -10·4 to 16·5%; p=0·66) or mental component scores (median 55·9 [50·2-58·9] vs median 55·2 [49·5-59·7]; p=0·98) between the intervention and usual care groups at 1 year. Seven adverse events (haemodynamic changes [n=3], arterial catheter removal [n=1], rectal tube dislodgement [n=1], and respiratory distress [n=2]) were reported in six (6%) of 99 patients in the intervention group and in none of the patients in the usual care group (p=0·029). INTERPRETATION: Early mobilisation might be the first known intervention to improve long-term cognitive impairment in ICU survivors after mechanical ventilation. These findings clearly emphasise the importance of avoiding delays in initiating mobilisation. However, the increased adverse events in the intervention group warrants further investigation to replicate these findings. FUNDING: None.
Assuntos
Disfunção Cognitiva , Deambulação Precoce , Adulto , Masculino , Humanos , Feminino , Adolescente , Deambulação Precoce/efeitos adversos , Estado Terminal/terapia , Qualidade de Vida , Unidades de Terapia Intensiva , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Resultado do TratamentoRESUMO
PURPOSE OF REVIEW: Invasive mechanical ventilation is a lifesaving intervention for patients with severe acute hypoxic respiratory failure (AHRF), but it is associated with neuromuscular, cognitive, and infectious complications. Noninvasive ventilation (NIV) may provide sufficient respiratory support without these complications. The helmet interface for NIV could address concerns raised for the use of NIV as first-line therapy in AHRF. This review will summarize and appraise the current evidence for helmet NIV in AHRF. RECENT FINDINGS: There are only six randomized controlled trials comparing helmet NIV to standard nasal cannula, facemask NIV, or high-flow nasal oxygen in patients with AHRF. Lower rates of endotracheal intubations and fewer days of mechanical ventilation were reported, with inconsistent findings on patient survival. Facemask NIV may worsen preexisting lung injury, delay intubations, and be inferior at delivering lung protective ventilation strategies compared with mechanical ventilation. The helmet interface could circumvent some of these concerns through the delivery of higher positive end expiratory pressure and more uniform distribution of negative pleural pressure. SUMMARY: There is limited evidence to support or refute the use of helmet NIV in AHRF. Further studies investigating the interface of helmet in NIV as a separate clinical entity are needed.
Assuntos
Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Ventilação não Invasiva/efeitos adversos , Respiração Artificial/efeitos adversos , Insuficiência Respiratória/terapia , Insuficiência Respiratória/etiologia , Respiração com Pressão Positiva/efeitos adversos , Oxigênio , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/complicações , Hipóxia/terapia , Oxigenoterapia/efeitos adversosRESUMO
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.