Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Protein Pept Lett ; 23(2): 169-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26655728

RESUMO

Cell penetrating peptides can be used as therapeutic agents via modulation of selective cell functions. Nitric oxide (NO) generated by vascular endothelial NO synthase (eNOS) plays a critical role in the NO/ cyclic guanosine 5'-monophosphate (cGMP)-mediated pulmonary vascular function. Here we examined whether internalization of a fifteen amino acid (KRFNSISCSSWRRKR) synthetic peptide (P3) enhances the catalytic activity of eNOS via caveolae/eNOS dissociation leading to NO release and increased cGMP production in pulmonary artery endothelial cells (EC). ECs were treated with varying concentrations of P3 and used to monitor internalization, isolation of caveolae-enriched fraction, the catalytic activity of eNOS, NO/cGMP production, and intracellular Ca(2+) release. Confocal images show timedependent internalization of P3 in EC. Treatment of EC with P3, but not scrambled P3, increased the catalytic activity of eNOS in a dose-dependent manner without change in eNOS expression or phosphorylation. Treatment of EC with P3 stimulated intracellular Ca(2+) release, increased the catalytic activity of phospatidylinsositide 3 kinase (PI3K) and resulted in eNOS/caveolae-1 (Cav-1) dissociation leading to translocation of eNOS to intracellular compartment in EC. P3- mediated activation of eNOS was abolished by intracellular Ca(2+) chelator 1,2-bis(2-aminophenooxy)ethane-N,N,N',N'- tertraacetic acid-AM (BAPTA-AM), PI3K inhibition, or by siRNA-mediated Cav-1 suppression. These results demonstrate that exogenous peptide consisting of cationic amino acids can internalize and enhance the catalytic activity of eNOS via modulation of caveolar signaling and intracellular Ca(2+) release in EC.


Assuntos
Cavéolas/metabolismo , Peptídeos Penetradores de Células/administração & dosagem , Pulmão/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Animais , Cavéolas/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Transdução de Sinais/genética , Suínos
2.
Nitric Oxide ; 51: 43-51, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26537637

RESUMO

Endothelial nitric oxide (NO) synthase (eNOS)-derived NO plays a critical role in the modulation of angiogenesis in the pulmonary vasculature. We recently reported that an eleven amino acid (SSWRRKRKESS) cell penetrating synthetic peptide (P1) activates caveolar signaling, caveloae/eNOS dissociation, and enhance NO production in lung endothelial cells (EC). This study examines whether P1 promote angiogenesis via modulation of caveolar signaling and the level of NO generation in EC and pulmonary artery (PA) segments. P1-enhanced tube formation and cell sprouting were abolished by caveolae disruptor Filipin (FIL) in EC and PA, respectively. P1 enhanced eNOS activity and angiogenesis were attenuated by inhibition of eNOS as well as PLCγ-1, PKC-α but not PI3K-mediated caveolar signaling in intact EC and/or PA. P1 failed to enhance the catalytic activity of eNOS and angiogenesis in caveolae disrupted EC by FIL. Lower (0.01 mM) concentration of NOC-18 enhanced angiogenesis without inhibition of eNOS activity whereas higher concentration of NOC-18 (1.0 mM) inhibited eNOS activity and angiogenesis in EC. Inhibition of eNOS by l-NAME in the presence of P1 resulted in near total loss of tube formation in EC. Although P1 enhanced angiogenesis mimicked only by lower concentrations of NO generated by NOC-18, this response is independent of caveolar signaling/integrity. These results suggest that P1-enhanced angiogenesis is regulated by dynamic process involving caveolar signaling-mediated increased eNOS/NO activity or by the direct exposure to NOC-18 generating only physiologic range of NO independent of caveolae in lung EC and PA segments.


Assuntos
Cavéolas/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Células Endoteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Óxido Nítrico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Animais , Western Blotting , Peptídeos Penetradores de Células/genética , Masculino , Ratos , Ratos Sprague-Dawley
3.
PLoS One ; 10(5): e0124705, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933390

RESUMO

Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx) priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs) of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of immunosuppressive regulatory T cells.


Assuntos
Aloenxertos/imunologia , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante de Pulmão , Tiorredoxinas/metabolismo , Animais , Anticorpos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/imunologia , Imunidade Humoral , Interleucina-10/biossíntese , Isoantígenos/imunologia , Masculino , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Baço/citologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo
4.
Am J Respir Crit Care Med ; 187(6): 648-57, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23370913

RESUMO

RATIONALE: Studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays a protective role against lung diseases, including pulmonary hypertension (PH). Recently, an antitrypanosomal drug, diminazene aceturate (DIZE), was shown to exert an "off-target" effect of enhancing the enzymatic activity of ACE2 in vitro. OBJECTIVES: To evaluate the pharmacological actions of DIZE in experimental models of PH. METHODS: PH was induced in male Sprague Dawley rats by monocrotaline, hypoxia, or bleomycin challenge. Subsets of animals were simultaneously treated with DIZE. In a separate set of experiments, DIZE was administered after 3 weeks of PH induction to determine whether the drug could reverse PH. MEASUREMENTS AND MAIN RESULTS: DIZE treatment significantly prevented the development of PH in all of the animal models studied. The protective effects were associated with an increase in the vasoprotective axis of the lung renin-angiotensin system, decreased inflammatory cytokines, improved pulmonary vasoreactivity, and enhanced cardiac function. These beneficial effects were abolished by C-16, an ACE2 inhibitor. Initiation of DIZE treatment after the induction of PH arrested disease progression. Endothelial dysfunction represents a hallmark of PH pathophysiology, and growing evidence suggests that bone marrow-derived angiogenic progenitor cells contribute to endothelial homeostasis. We observed that angiogenic progenitor cells derived from the bone marrow of monocrotaline-challenged rats were dysfunctional and were repaired by DIZE treatment. Likewise, angiogenic progenitor cells isolated from patients with PH exhibited diminished migratory capacity toward the key chemoattractant stromal-derived factor 1α, which was corrected by in vitro DIZE treatment. CONCLUSIONS: Our results identify a therapeutic potential of DIZE in PH therapy.


Assuntos
Diminazena/análogos & derivados , Hipertensão Pulmonar/prevenção & controle , Tripanossomicidas/farmacologia , Animais , Ensaios de Migração Celular , Diminazena/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina , Células-Tronco/fisiologia
5.
Am J Physiol Lung Cell Mol Physiol ; 303(10): L912-22, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23002075

RESUMO

Distal arterioles with limited smooth muscles help maintain the high blood flow and low pressure in the lung circulation. Chronic hypoxia induces lung distal vessel muscularization. However, the molecular events that trigger alveolar hypoxia-induced peripheral endothelium modulation of vessel wall smooth muscle cell (SMC) proliferation and filling of nonmuscular areas are unclear. Here, we investigated the role of CX3CL1/CX3CR1 system in endothelial-SMC cross talk in response to hypoxia. Human lung microvascular endothelial cells responded to alveolar oxygen deficiency by overproduction of the chemokine CX3CL1. The CX3CL1 receptor CX3CR1 is expressed by SMCs that are adjacent to the distal endothelium. Hypoxic release of endothelial CX3CL1 induced SMC phenotypic switching from the contractile to the proliferative state. Inhibition of CX3CR1 prevented CX3CL1 stimulation of SMC proliferation and monolayer expansion. Furthermore, CX3CR1 deficiency attenuated spiral muscle expansion, distal vessel muscularization, and pressure elevation in response to hypoxia. Our findings indicate that the capillary endothelium relies on the CX3CL1-CX3CR1 axis to sense alveolar hypoxia and promote peripheral vessel muscularization. These results have clinical significance in the development of novel therapeutics that target mechanisms of distal arterial remodeling associated with pulmonary hypertension induced by oxygen deficiency that is present in people living at high altitudes and patients with obstructive lung diseases.


Assuntos
Proliferação de Células , Quimiocina CX3CL1/metabolismo , Miócitos de Músculo Liso/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Receptor 1 de Quimiocina CX3C , Hipóxia Celular , Quimiocina CX3CL1/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/patologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
6.
Peptides ; 35(1): 78-85, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22465621

RESUMO

Pulmonary vascular endothelial nitric oxide (NO) synthase (eNOS)-derived NO is the major stimulant of cyclic guanosine 5'-monophosphate (cGMP) production and NO/cGMP-dependent vasorelaxation in the pulmonary circulation. We recently synthesized multiple peptides and reported that an eleven amino acid (SSWRRKRKESS) peptide (P1) but not scrambled P1 stimulated the catalytic activity but not expression of eNOS and causes NO/cGMP-dependent sustained vasorelaxation in isolated pulmonary artery (PA) segments and in lung perfusion models. Since cGMP levels can also be elevated by inhibition of phosphodiesterase type 5 (PDE-5), this study was designed to test the hypothesis that P1-mediated vesorelaxation is due to its unique dual action as NO-releasing PDE-5 inhibitor in the pulmonary circulation. Treatment of porcine PA endothelial cells (PAEC) with P1 caused time-dependent increase in intracellular NO release and inhibition of the catalytic activity of cGMP-specific PDE-5 but not PDE-5 protein expression leading to increased levels of cGMP. Acute hypoxia-induced PA vasoconstriction ex vivo and continuous telemetry monitoring of hypoxia (10% oxygen)-induced elevated PA pressure in freely moving rats were significantly restored by administration of P1. Chronic hypoxia (10% oxygen for 4 weeks)-induced alterations in PA perfusion pressure, right ventricular hypertrophy, and vascular remodeling were attenuated by P1 treatment. These results demonstrate the potential therapeutic effects of P1 to prevent and/or arrest the progression of hypoxia-induced PAH via NO/cGMP-dependent modulation of hemodynamic and vascular remodeling in the pulmonary circulation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/farmacologia , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Vasodilatadores/farmacologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , GMP Cíclico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertrofia Ventricular Direita/prevenção & controle , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , Ligação Proteica , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Suínos , Vasodilatadores/uso terapêutico
7.
Mol Cell Biochem ; 360(1-2): 309-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948261

RESUMO

We previously reported that the vasoactive peptide 1 (P1, "SSWRRKRKESS") modulates the tension of pulmonary artery vessels through caveolar endothelial nitric oxide synthase (eNOS) activation in intact lung endothelial cells (ECs). Since PKC-α is a caveolae resident protein and caveolae play a critical role in the peptide internalization process, we determined whether modulation of caveolae and/or caveolar PKC-α phosphorylation regulates internalization of P1 in lung ECs. Cell monolayers were incubated in culture medium containing Rhodamine red-labeled P1 (100 µM) for 0-120 min. Confocal examinations indicate that P1 internalization is time-dependent and reaches a plateau at 60 min. Caveolae disruption by methyl-ß-cyclodextrin (CD) and filipin (FIL) inhibited the internalization of P1 in ECs suggesting that P1 internalizes via caveolae. P1-stimulation also enhances phosphorylation of caveolar PKC-α and increases intracellular calcium (Ca(2+)) release in intact cells suggesting that P1 internalization is regulated by PKC-α in ECs. To confirm the roles of increased phosphorylation of PKC-α and Ca(2+) release in internalization of P1, PKC-α modulation by phorbol ester (PMA), PKC-α knockdown, and Ca(2+) scavenger BAPTA-AM model systems were used. PMA-stimulated phosphorylation of caveolar PKC-α is associated with significant reduction in P1 internalization. In contrast, PKC-α deficiency and reduced phosphorylation of PKC-α enhanced P1 internalization. P1-mediated increased phosphorylation of PKC-α appears to be associated with increased intracellular calcium (Ca(2+)) release since the Ca(2+) scavenger BAPTA-AM enhanced P1 internalization. These data indicate that caveolar integrity and P1-mediated increased phosphorylation of caveolar PKC-α play crucial roles in the regulation of P1 internalization in lung ECs.


Assuntos
Cavéolas/enzimologia , Peptídeos Penetradores de Células/metabolismo , Células Endoteliais/metabolismo , Pulmão/citologia , Peptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Animais , Sinalização do Cálcio , Cavéolas/efeitos dos fármacos , Caveolina 1/metabolismo , Células Cultivadas , Endocitose/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Filipina/farmacologia , Fosforilação , Proteína Quinase C-alfa/genética , Suínos , Acetato de Tetradecanoilforbol/farmacologia , beta-Ciclodextrinas/farmacologia
8.
Int J Clin Exp Med ; 3(3): 223-32, 2010 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-20827320

RESUMO

Tobacco smoke exhaled from smokers is a key component of secondhand smoke, contributing to lung alveolar wall destruction seen in chronic lung diseases. Although mainstream and sidestream tobacco smoke are cyto-toxic to lung cells, it is unclear whether exhaled smoke induces lung cell injury or even death. We sought to establish an in vitro model to examine the effects of exhaled smoke on lung cells. Phosphate-buffered saline-conditioned cigarette smoke (CCS) derived from a blow-by system was used to mimic exhaled tobacco smoke exposure. Exposure of medium to CCS leads to dose-dependent increases in nicotine/cotinine levels. Scanning spectrophotometric analysis of the CCS-exposed medium reveals an absorption peak at 290 nm wavelength. The OD values at 290 nm are correlated with nicotine levels in the exposed medium, indicating that a simple measurement of OD at 290 nm can be used to monitor CCS exposure. Tobacco smoke contacts the microvascular endothelium located at lung alveoli, before it enters the blood stream. Hence, human lung microvascular endothelial cells (hMVEC) were exposed to CCS and assessed for cell injury and death. Exposure of hMVEC to CCS equivalent to burning 12-16 cigarettes leads to increased LDH release from the cells into the medium. This suggests that CCS can induce lung cell injury. CCS at a low level increases cell growth, whereas the high level of CCS decreases cell viability. In addition, CCS exposure induces cell detachment and morphological changes. Our results demonstrate that exposure of buffer-conditioned mainstream cigarette smoke leads to increased nicotine/cotinine levels and cell injury/death, which may contribute to the pathophysiology of passive smoking-associated lung diseases.

9.
Int J Clin Exp Med ; 3(3): 233-44, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20827321

RESUMO

Persistent inflammation is often present in patients with lung diseases such as chronic obstructive pulmonary diseases (COPD) and pulmonary hypertension. Circulatory leukocyte migration through the lung vascular endothelium contributes to the structural destruction and remodeling seen in these chronic lung diseases. An inflammatory chemokine CX3CL1/fractalkine is associated with inflammatory lung diseases. Membrane-anchored CX3CL1 serves as an adhesion molecule to capture subsets of mononuclear leukocytes that express the sole receptor, CX3CR1. The extracellular chemokine domain of CX3CL1 can be cleaved/shed by a disintegrin and metalloproteinase domain (ADAM) from stimulus-exposed cells. Soluble CX3CL1 chemoattracts and activates CX3CR1+ leukocytes such as CD8+, CD4+, and γδ T lymphocytes, natural killer cells, dendritic cells, and monocytes/macrophages. CX3CR1+ leukocyte attachment to and migration through the lung vascular endothelium lead to mononuclear cell accumulation in the lung vessel walls and parenchyma. Infiltrated CX3CR1+ immune cells can release mediators to induce injury, stimulate proliferation, and/or chemoattract inflammatory cells. This contributes to structural destruction and remodeling in the development of inflammatory lung diseases. Limited clinical success in treating chronic pulmonary diseases-associated lung functional decline indicates the urgency and significance of understanding upstream signaling that triggers inflammation. This article reviews the advances in the CX3CL1-CX3CR1 axis-mediated modulation of mononuclear leukocyte adhesion and migration in inflammatory lung diseases such as COPD and pulmonary hypertension. Better understanding of the constant flow of circulating leukocytes into the lung vessel wall and parenchyma will help set a stage for the development of novel therapeutic approaches to treat or even cure chronic lung diseases including COPD and pulmonary hypertension.

10.
Am J Physiol Cell Physiol ; 299(6): C1541-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861464

RESUMO

Activated arginase has been implicated in many diseases including cancer, immune cell dysfunction, infections, and vascular disease. Enhanced arginase activity has been reported in lungs of patients with pulmonary artery hypertension. We used hypoxia as a model for pulmonary hypertension and studied the effect of exposure to hypoxia on arginase activity in human lung microvascular endothelial cells (HMVEC). Hypoxia induces upregulation of arginase activity as well as mRNA and protein levels of arginase II (Arg II), the only arginase isoform we were able to identify in HMVEC. In endothelial cells, arginase shares and competes for the substrate l-arginine with nitric oxide (NO) synthase (NOS). Through regulation of substrate availability for NOS, arginase is able to modulate NO production. To evaluate the role of Arg II in regulation of NO production under hypoxia, we compared NO output (RFL-6 reporter assay) in cells with normal and silenced Arg II. Exposure to hypoxia led to an increase in NO levels produced by HMVEC. Inhibition of Arg II by specific small interfering RNA or by the pharmacological inhibitor BEC additionally enhanced the levels of NO. Another possible role for activated arginase is involvement in regulation of cell proliferation. However, we showed that hypoxia decreased cell proliferation and upregulated Arg II did not have an effect on cell proliferation. Since hypoxia-inducible factors (HIF) are a family of transcriptional factors activated by hypoxia, we tested the possibility of involvement of HIF-1 and HIF-2 in regulation of Arg II under hypoxia. The silencing of HIF-2 but not HIF-1 prevented the activation of Arg II by hypoxia.


Assuntos
Arginase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Endoteliais/enzimologia , Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/enzimologia , Arginase/análise , Arginase/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácidos Borônicos/farmacologia , Hipóxia Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Fator 1 Induzível por Hipóxia/genética , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima
11.
Am J Respir Crit Care Med ; 182(8): 1065-72, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20581171

RESUMO

RATIONALE: An activated vasoconstrictive, proliferative, and fibrotic axis of the renin angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin [Ang]II/AngII type 1 receptor) has been implicated in the pathophysiology of pulmonary fibrosis (PF) and pulmonary hypertension (PH). The recent discovery of a counterregulatory axis of the renin angiotensin system composed of ACE2/Ang-(1-7)/Mas has led us to examine the role of this vasoprotective axis on such disorders. OBJECTIVES: We hypothesized that Ang-(1-7) treatment would exert protective effects against PF and PH. METHODS: Lentiviral packaged Ang-(1-7) fusion gene or ACE2 cDNA was intratracheally administered into the lungs of male Sprague Dawley rats. Two weeks after gene transfer, animals received bleomycin (2.5 mg/kg). In a subsequent study, animals were administered monocrotaline (MCT, 50 mg/kg). MEASUREMENTS AND MAIN RESULTS: In the PF study, bleomycin administration resulted in a significant increase in right ventricular systolic pressure, which was associated with the development of right ventricular hypertrophy. The lungs of these animals also exhibited excessive collagen deposition, decreased expression of ACE and ACE2, increased mRNA levels for transforming growth factor ß and other proinflammatory cytokines, and increased protein levels of the AT1R. Overexpression of Ang-(1-7) significantly prevented all the above-mentioned pathophysiological conditions. Similar protective effects were also obtained with ACE2 overexpression. In the PH study, rats injected with MCT developed elevated right ventricular systolic pressure, right ventricular hypertrophy, right ventricular fibrosis, and pulmonary vascular remodeling, all of which were attenuated by Ang-(1-7) overexpression. Blockade of the Mas receptor abolished the beneficial effects of Ang-(1-7) against MCT-induced PH. CONCLUSIONS: Our observations demonstrate a cardiopulmonary protective role for the ACE2/Ang-(1-7)/Mas axis in the treatment of lung disorders.


Assuntos
Angiotensina I/genética , Terapia Genética , Hipertensão Pulmonar/prevenção & controle , Fragmentos de Peptídeos/genética , Fibrose Pulmonar/prevenção & controle , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Bleomicina , Hipertensão Pulmonar/patologia , Masculino , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução Genética
12.
Mol Cell Biochem ; 343(1-2): 211-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20563744

RESUMO

Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy. There are several arginase-specific inhibitors commercially available. Herein, we show that some of these inhibitors lead to an increase in arginase II protein level and activity. These effects should be anticipated when these inhibitors are in use or during the testing of new arginase inhibitors.


Assuntos
Arginase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Endotélio Vascular/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
13.
Med Hypotheses ; 74(6): 1069-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20064695

RESUMO

A high serum uric acid is common in subjects with pulmonary hypertension. The increase in serum uric acid may be a consequence of the local tissue ischemia and/or hypoxia, and it may also result from other factors independent of ischemia or hypoxia that occur in various forms of pulmonary hypertension. While classically viewed as a secondary phenomenon, recent studies suggest that hyperuricemia may also have a role in mediating the local vasoconstriction and vascular remodeling in the pulmonary vasculature. If uric acid does have a contributory role in pulmonary hypertension, we may see an increasing prevalence of pulmonary hypertension as hyperuricemia is common in subjects with obesity and metabolic syndrome. We propose studies to investigate the role of uric acid in pulmonary hypertension and to determine if lowering serum uric acid may have clinical benefit in this condition.


Assuntos
Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/etiologia , Ácido Úrico/sangue , Animais , Humanos , Hipertensão Pulmonar/terapia , Hiperuricemia/sangue , Hiperuricemia/complicações , Hipóxia/complicações , Modelos Biológicos , Estresse Oxidativo , Fatores de Risco , Vasoconstrição/fisiologia
14.
Cell Physiol Biochem ; 24(5-6): 471-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910687

RESUMO

We reported that an 11 amino acid synthetic peptide (P1) activates lung endothelial cell nitric oxide synthase (eNOS) independent of its change in expression and/or phosphorylation. Since caveolae/eNOS dissociation is known to enhance the catalytic activity of eNOS, we examined whether P1-mediated increase of eNOS activity is associated with caveolae/cholesterol modulation, increased caveolin-1 phosphorylation, and intracellular compartmentalization of eNOS in pulmonary artery endothelial cells (PAEC). PAEC were incubated with or without (control) P1 or cholesterol modulators/caveolae disruptors, cholesterol oxidase (CHOX) and methyl-beta-cyclodextrin (CD), for 1 h at 37 degrees C. After incubation cells were used for: i) immunoprecipitation, ii) isolation of plasma membrane (PM)-, Golgi complex (GC)-, and non-Golgi complex (NGC)-enriched fractions, iii) immunofluorescence confocal imaging, and iv) electron microscopy for localization and/or eNOS activity. P1, CHOX, and CD-stimulation caused dissociation of eNOS from PM with increased localization to GC and/or NGC. P1 and CHOX significantly increased eNOS activity in PM and GC and CD-stimulation increased eNOS activity localized only in GC. P1 increased phosphorylation of caveolin-1 in intact cells and GC fraction. Immunofluorescence and/or immunogold labeled imaging/electron microscopy analysis of P1-, CHOX-, and CD-stimulated intact cells confirmed eNOS/caveolae dissociation and translocation of eNOS to GC. These results suggest that: i) P1-stimulation translocates eNOS to GC and enhances the catalytic activity of eNOS in both the PM and GC fractions of PAEC, ii) CHOX- but not CD-mediated caveolae and/or cholesterol modulation mimics the effect of P1-stimulated compartmentalization and activation of eNOS in PAEC, and iii) P1-stimulated caveolae/cholesterol modulation, phosphorylation of caveolin-1, and activation of eNOS is physiologically relevant since P1 is known to enhance NO/cGMP-dependent vasorelaxation in the pulmonary circulation.


Assuntos
Pulmão/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Cavéolas/metabolismo , Caveolina 1/metabolismo , Compartimento Celular , Membrana Celular/metabolismo , Células Cultivadas , Colesterol Oxidase/farmacologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Complexo de Golgi/metabolismo , Óxido Nítrico Sintase Tipo III/análise , Fosforilação , Suínos , beta-Ciclodextrinas/farmacologia
15.
Int J Clin Exp Med ; 2(1): 87-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19436835

RESUMO

Hypoxia-increased endothelin-1 (ET-1) expression contributes to vasoconstriction and vessel wall thickening, often seen in the progression of pulmonary hypertension. We sought to investigate whether hypoxic modulation of preproET-1 transcription is associated with protein tyrosine kinase and phosphatidylinositol-3-kinase (PI3K). ET-1 is predominantly produced in and secreted from the vascular endothelium. Cultured human pulmonary artery endothelial cells (PAEC) in basic medium EBM-2 were exposed to hypoxia (1% oxygen, 5% CO(2), 37 degrees C) or normoxia (room air containing 5% CO(2)) for 0-48 hr. RNA was extracted from the treated cells and subjected to quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Hypoxia increases the relative levels of steady-state preproET-1 mRNA. The results of actinomycin D chase studies suggest that hypoxia-increased levels of preproET-1 mRNA are unlikely to be caused by increased RNA stability. A modified nuclear run-on method coupled with the sensitive qRT-PCR technique was used to assess preproET-1 gene transcription. The synthesis rate of preproET-1 mRNA in the cells exposed to hypoxia is higher than that in normoxic cells. The inhibitors of protein tyrosine kinases and PI3K, genistein and PI3Kgamma inhibitor II, were used to elucidate the role of protein tyrosine kinase and PI3K in hypoxic modulation of preproET-1 expression. Pre-incubation of human PAEC with genistein or PI3Kgamma inhibitor II abolishes hypoxia-increased levels of preproET-1 mRNA. Our observations support the notion that hypoxia increases the level of preproET-1 mRNA through upregulation of RNA synthesis, which is associated with protein tyrosine kinase- and PI3K-mediated signal transduction pathways. This implies that therapeutic interventions targeting protein tyrosine kinases and/or PI3K might be used to treat hypoxic pulmonary hypertension.

16.
Biomarkers ; 13(5): 486-95, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18979641

RESUMO

Primary graft dysfunction and rejection are common complications in lung transplant recipients. Increased expression of thioredoxin-1 (Trx), a 12-kDa redox-regulatory protein, has been reported in multiple lung pathophysiological conditions involving oxidative and inflammatory mediated injury including graft rejection in canine and rat models of lung transplantation. Our objective was to determine whether increased Trx expression is associated with progression of rejection pathophysiology in human lung transplant recipients. Bronchoalveolar lavage (BAL) fluid and transbronchial biopsy samples were collected as a routine part of post-transplant clinical care from 18 lung transplant patients from our adult lung transplant programme. Lung transplant recipient profile included age/sex, ethnic background, days on ventilator, total ischaemic time, and cytomegalovirus (CMV) status. Based on histopathological grading criteria, patients were divided into two groups, rejecting (A1/A2 or B1) and non-rejecting (A0/B0). Rejecting and non-rejecting group total BAL cell counts and differential cell counts for neutrophils, macrophages, lymphocytes and eosinophils as well as total BAL cell Trx levels were analysed. Total BAL cell counts were significantly (p <0.05) elevated in graft rejecting versus non-rejecting patients. Differential BAL macrophage counts were comparable in rejection and non-rejection groups, whereas there were significant increases in neutrophils and lymphocytes but not eosinophils in patients with rejection versus non-rejection pathology (p <0.05). Total ischaemic time and days on ventilator in rejection and non-rejection groups were comparable. However, Trx levels were significantly elevated in BAL cells from graft-rejecting patients compared with non-rejecting patients (p <0.05). These data suggest that surveillance monitoring of BAL Trx levels after lung transplantation can serve as a biomarker to assess severity of graft rejection.


Assuntos
Biomarcadores/análise , Líquido da Lavagem Broncoalveolar , Rejeição de Enxerto , Transplante de Pulmão , Tiorredoxinas/análise , Adulto , Idoso , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência
17.
J Heart Lung Transplant ; 27(10): 1142-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18926407

RESUMO

BACKGROUND: Lung graft dysfunction and rejection are significant causes of morbidity and mortality in transplant recipients. Thioredoxin-1, a redox-regulatory protein, functions as an antioxidant in multiple organs, including lungs. We examined whether priming of the donor lungs with thioredoxin-1 before transplantation attenuates acute lung injury. METHODS: Orthotopic left lung transplantation was performed from Lewis (donor) to Sprague-Dawley (recipient) rats. Donor lungs were perfused and stored in Perfadex solution (Vitrolife, Uppsala, Sweden), with or without purified thioredoxin-1. Changes in bronchoalveolar lavage (BAL) analysis, allograft oxygen exchange function, nuclear factor kappaB (NF-kappaB)/DNA binding, myeloperoxidase activities, and immunohistologic evaluation of neutrophils, macrophages, and cytotoxic T-cells (CD8(+)) infiltration were examined in post-transplant allograft (left) and native (right) lungs at Days 1 and 5. RESULTS: BAL cell differential analysis showed significant increases in macrophages and neutrophils in allografts at Day 1 post-transplant. At Days 1 and 5, lymphocyte infiltration was significantly increased and myeloperoxidase and NF-kappaB/DNA binding activities were increased vs basal activities. Immunohistology staining revealed increased infiltration of macrophages, neutrophils, and CD8(+) T cell sub-sets. Pre-transplant priming of donor lungs with thioredoxin-1 improved oxygen exchange and attenuated NF-kappaB/DNA binding activity, and infiltration of macrophages, neutrophils, and CD8(+) T cell sub-sets in allografts at Days 1 and 5 post-transplant. CONCLUSIONS: Priming of donor lungs with thioredoxin-1 before transplant attenuates acute allograft injury in a rat model of lung transplantation, and appears to be associated with the antioxidant function of thioredoxin-1 that limits early ischemia-reperfusion injury, NF-kappaB activation, and progressive infiltration of inflammatory and immune cells in allografts.


Assuntos
Transplante de Pulmão/fisiologia , Pulmão/fisiologia , Complicações Pós-Operatórias/prevenção & controle , Tiorredoxinas/uso terapêutico , Animais , Líquido da Lavagem Broncoalveolar , Rejeição de Enxerto/prevenção & controle , Pulmão/efeitos dos fármacos , Transplante de Pulmão/efeitos adversos , Transplante de Pulmão/métodos , Modelos Animais , NF-kappa B/metabolismo , Consumo de Oxigênio , Peroxidase/metabolismo , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Doadores de Tecidos , Transplante Homólogo
18.
Mol Cell Biochem ; 305(1-2): 71-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17565448

RESUMO

We recently reported that nitric oxide (NO) modulates expression of multiple genes associated with apoptotic pathways, including expression of caspase-8. The objective of the present study is to determine whether the NO-induced expression of the caspase-8 gene is regulated via signal transducers and activators of transcription-1 (STAT-1) signaling. The confluent monolayers of pulmonary artery endothelial cells (PAEC) were incubated with or without (control) 1 mM NOC-18, a NO donor, at 37 degrees C for 0-24 h. In some experiments PAEC were pretreated with a Janus kinase (JAK-2) inhibitor, AG490 (20 microM). Exposure of PAEC to NO-increased relative levels of caspase-8 mRNA as determined using quantitative real time PCR. Relative levels of phosphorylated STAT-1 at Serine (Ser)-727, but not total STAT-1 expression in NO-exposed cells, were upregulated significantly compared to control cells. AG490 attenuated NO-induced phosphorylation of STAT-1 at Ser 727 and expression of caspase-8 mRNA, suggesting JAK2 plays a role in the induction of caspase-8 mRNA. The promoter of caspase-8 has four gamma-activated sequence (GAS) and two interferon-stimulated response element (ISRE) transcription factor-binding sites. NO enhanced the STAT-1 binding activity to GAS/ISRE. Suppression of STAT-1 expression attenuated NO-induced elevation of caspase-8 mRNA. These studies demonstrate that a NO-dependent increase in caspase-8 mRNA levels is associated with phosphorylation of STAT-1 at Ser-727 and STAT1 binding to the caspase-8 promoter in cultured PAEC.


Assuntos
Caspase 8/genética , Células Endoteliais/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Janus Quinase 2/fisiologia , Pulmão/efeitos dos fármacos , Óxido Nítrico/farmacologia , Fator de Transcrição STAT1/fisiologia , Animais , Caspase 8/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Pulmão/enzimologia , Fosforilação , Ligação Proteica , RNA Mensageiro/metabolismo , Elementos de Resposta , Fator de Transcrição STAT1/metabolismo , Suínos , Transcrição Gênica , Regulação para Cima/efeitos dos fármacos
19.
Br J Pharmacol ; 148(5): 732-40, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16715118

RESUMO

1. Myristoylated pseudosubstrate of PKCzeta (mPS) - a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCzeta pseudosubstrate region -- is considered a selective cell-permeable inhibitor of PKCzeta. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation. 2. mPS at micromolar concentrations (1-10 microM) induced profound phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary artery endothelial cells (PAEC). The same changes were observed after treatment of PAEC with a myristoylated scrambled version of mPS (mScr), whereas a cell-permeable version of PKCzeta pseudosubstrate fused to the HIV-TAT membrane-translocating peptide did not induce analogous changes, suggesting that myristoylation confers new properties on the peptides consisting of activation of different signaling pathways in endothelial cells. 3. In addition to mPS and mScr, a number of other myristoylated peptides induced phosphorylation of eNOS suggesting that myristoylation of peptides can activate eNOS by mechanisms unrelated to inhibition of PKC. All active myristoylated peptides contained basic amino acids motif and were longer than six amino acids. 4. Activation of eNOS by myristoylated peptides was dependent on the PI3K/Akt pathway and the rise of intracellular calcium and was associated with an elevation of cGMP levels in PAEC and with relaxation of precontracted isolated pulmonary artery segments. 5. Myristoylated peptides can be considered a new class of activators of NO production in endothelial cells and that using mPS as a specific inhibitor of PKC should be done with caution, especially in endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Animais , Cálcio/fisiologia , Células Cultivadas , GMP Cíclico/biossíntese , Humanos , Isoenzimas/química , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação/efeitos dos fármacos , Placebos/farmacologia , Proteína Quinase C/química , Proteína Quinase C/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Suínos , Vasodilatação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Am J Physiol Renal Physiol ; 290(3): F625-31, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16234313

RESUMO

The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.


Assuntos
Frutose/toxicidade , Síndrome Metabólica/sangue , Ácido Úrico/sangue , Animais , Masculino , Síndrome Metabólica/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA