RESUMO
Albendazole (ABZ), an anthelmintic drug, has been repurposed to treat various types of cancers. However, poor solubility of ABZ, resulting in low bioavailability, limits its application. Nanosuspension is a versatile method for enhancing the dissolution of hydrophobic molecules, but a successful drying has been the biggest challenge in the field. The objective of this research is to formulate and optimize ABZ nanosuspension (NS) coated granules for rapid delivery of ABZ for the treatment of colorectal cancer. ABZ NS was prepared by dual centrifugation method using Kollidon® VA64 and sodium lauryl sulphate (SLS) as stabilizers. The processing method was optimized to obtain a stable nanosuspension with particle size < 300â¯nm. The optimized ABZ NS was coated on microcrystalline cellulose (MCC) to form the nano-coated granules (NCG) and filled in EUDRACAP® for colon targeted delivery. The ABZ NS and NCG achieved â¼ 60â¯% and â¼55â¯% drug release, respectively, in presence of bile salt at colonic pH. Half-maximal inhibitory concentration (IC50) of ABZ NS was found to be 1.18 ± 0.081⯵M and 3.59 ± 0.080⯵M in two colorectal cancer cell lines: HCT 116 and HT-29, respectively. In addition, In vitro 3D tumor assay revealed that ABZ NS has superior tumor growth inhibition activity compared to the control and pure ABZ. The preparation of ABZ NCG in EUDRACAP® could be a promising approach to achieve colon targeted delivery and to repurpose ABZ for the treatment of colorectal cancer.
RESUMO
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained. Based on the critical relationship between EGFR, c-MYC, and Kirsten rat sarcoma virus (K-Ras), simultaneous degradation of EGFR and Bromodomain-containing protein 4 (BRD4) using "Proteolysis Targeting Chimeras (PROTACs)" could be a promising approach. PROTACs are emerging class of oncoprotein degraders but very challanging to deliver in vivo. Compared to individual IC50s, strong synergism was observed at 1:1 ratio of BPRO and EPRO in NSCLC cell lines with diverse mutation. Significant inhibition of cell growth with higher cellular apoptosis was observed in 2D and 3D-based cell assays in nanomolar concentrations. EGFR activation assay revealed 47.60 % EGFR non-expressing cells confirming EGFR-degrading potential of EPRO. A lung cancer specific nanoliposomal formulation of EGFR and BRD4-degrading PROTACs (EPRO and BPRO) was prepared and characetrized. Successful encapsulation of the two highly lipophilic molecules was achieved in EGFR-targeting nanoliposomal carriers (T-BEPRO) using a modified hydration technique. T-BEPRO revealed a particle size of 109.22 ± 0.266 nm with enhanced cellular uptake and activity. Remarkably, parenterally delivered T-BEPRO in tumor-bearing mice showed a substantially higher % tumor growth inhibition (TGI) of 77.6 % with long-lasting tumor inhibitory potential as opposed to individual drugs.
RESUMO
BACKGROUND: Human-snake conflicts are common worldwide, often resulting in snakebites. Snakebite envenoming causes over 125,000 deaths and 400,000 permanent disabilities worldwide every year. India alone accounts for an average of ~58,000 annual snakebite-induced deaths. As human developments rapidly expand into suburban and rural areas, snakes are being displaced and incidences of residents finding snakes within their dwellings are increasing. Most people have an innate fear of snakes, compounded by centuries of negative influence from culture and mythology manifesting in people often attempting to kill snakes. Snake rescuers are volunteers who remove and relocate snakes to safe areas. This is a risky job that poses potentially fatal implications if bitten. These volunteers mostly receive no financial compensation for their time or transportation costs, but they choose to do it for their love of snakes, conservation, and for the altruistic nature of helping others. Snake rescuers often receive no formal training and are unfunded resulting in removing snakes improperly without adequate safety equipment or the required skill set to safely complete the task. Therefore, it is critical to determine their challenges and requirements to promote the safe rescue of snakes while protecting human lives. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed an online questionnaire and interviewed 152 snake rescuers in Tamil Nadu, India following written informed consent to determine their challenges and needs for rescuing snakes safely. The results demonstrate that most rescuers are males, and they conduct snake rescues for varying lengths of time. They mostly receive no formal training and are bitten by snakes. They spend their own money on the purchase of snake-handling equipment and on treatments if bitten or injured during a rescue. CONCLUSIONS/SIGNIFICANCE: The rescuers highlighted the urgent need for formal training, safety equipment and standard protocols for rescuing snakes in Tamil Nadu. Overall, this study demonstrates that snake rescuing should be appropriately regulated by the authorities, in particular the Wildlife Division of State Forest Departments in India, and formal training along with necessary equipment, medical insurance and appropriate recognition should be provided to them to safely remove snakes from human dwellings and manage the safety of both snakes and humans. They can also act as educators to disseminate information about the preventive and first aid measures for snakebites as well as the ecological importance of snakes.
Assuntos
Mordeduras de Serpentes , Serpentes , Índia , Humanos , Mordeduras de Serpentes/prevenção & controle , Animais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Conservação dos Recursos Naturais , Inquéritos e Questionários , Idoso , Voluntários/psicologiaRESUMO
BACKGROUND: Ageing is a complex multifactorial process, impacting all organs and tissues, with DNA damage accumulation serving as a common underlying cause. To decelerate ageing, various strategies have been applied to model organisms and evaluated for health and lifespan benefits. Dietary restriction (DR, also known as caloric restriction) is a well-established long-term intervention recognized for its universal anti-ageing effects. DR temporarily suppresses growth, and when applied to progeroid DNA repair-deficient mice doubles lifespan with systemic health benefits. Counterintuitively, attenuation of myostatin/activin signalling by soluble activin receptor (sActRIIB), boosts the growth of muscle and, in these animals, prevents muscle wasting, improves kidney functioning, and compresses morbidity. METHODS: Here, we investigated a combined approach, applying an anabolic regime (sActRIIB) at the same time as DR to Ercc1Δ/- progeroid mice. Following both single treatments and combined, we monitored global effects on body weight, lifespan and behaviour, and local effects on muscle and tissue weight, muscle morphology and function, and ultrastructural and transcriptomic changes in muscle and kidney. RESULTS: Lifespan was mostly influenced by DR (extended from approximately 20 to 40 weeks; P < 0.001), with sActRIIB clearly increasing muscle mass (35-65%) and tetanic force (P < 0.001). The combined regime yielded a stable uniform body weight, but increased compared with DR alone, synergistically improved motor coordination and further delayed the onset and development of balance problems. sActRIIB significantly increased muscle fibre size (P < 0.05) in mice subjected to DR and lowered all signs of muscle damage. Ercc1Δ/- mice showed abnormal neuromuscular junctions. Single interventions by sActRIIB treatment or DR only partially rescued this phenotype, while in the double intervention group, the regularly shaped junctional foldings were maintained. In kidney of Ercc1Δ/- mice, we observed a mild but significant foot process effacement, which was restored by either intervention. Transcriptome analysis also pointed towards reduced levels of DNA damage in muscle and kidney by DR, but not sActRIIB, while these levels retained lower in the double intervention. CONCLUSIONS: In muscle, we found synergistic effects of combining sActRIIB with DR, but not in kidney, with an overall better health in the double intervention group. Crucially, the benefits of each single intervention are not lost when administered in combination, but rather strengthened, even when sActRIIB was applied late in life, opening opportunities for translation to human.
RESUMO
Patients suffering from BRAF mutant melanoma have tumor recurrence within merely 7 months of treatment with a potent BRAF inhibitor (BRAFi) like vemurafenib. It has been proven that diverse molecular pathways driving BRAFi resistance converge to activation of c-Myc in melanoma. Therefore, we identified a novel combinatorial therapeutic strategy by targeting loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene and upregulated BRD4 oncoprotein as Myc-dependent vulnerabilities of drug-resistant melanoma. Being promising therapeutic targets, we decided to concomitantly deliver PTEN plasmid and BRD4 targeted PROteolysis-TArgeting Chimera (ARV) to drug the "undruggable" c-Myc in BRAFi-resistant melanoma. Since PTEN plasmid and ARV are distinct in their physicochemical properties, we fabricated PTEN-plasmid loaded lipid nanoparticles (PL-NANO) and ARV-825-loaded nanoliposomes (AL-NANO) to yield a mean particle size of less than 100 nm and greater than 99% encapsulation efficiency for each therapeutic payload. Combination of PL-NANO and AL-NANO displayed synergistic tumor growth inhibition and substantial apoptosis in in vitro two-dimensional and three-dimensional models. Importantly, simultaneous delivery of PL-NANO and AL-NANO achieved significant upregulation of PTEN expression levels and degradation of BRD4 protein to ultimately downregulate c-Myc levels in BRAFi-resistant melanoma cells. Altogether, lipid nanocarriers delivering this novel lethal cocktail stands as one-of-a-kind gene therapy to target undruggable c-Myc oncogene in BRAFi-resistant melanoma.
RESUMO
The current 5-year survival rate of pancreatic cancer is about 12%, making it one of the deadliest malignancies. The rapid metastasis, acquired drug resistance, and poor patient prognosis necessitate better therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC). Multiple studies show that combining chemotherapeutics for solid tumors has been successful. Targeting two distinct emerging hallmarks, such as non-mutational epigenetic changes by panobinostat (Pan) and delayed cell cycle progression by abemaciclib (Abe), inhibits pancreatic cancer growth. HDAC and CDK4/6 inhibitors are effective but are prone to drug resistance and failure as single agents. Therefore, we hypothesized that combining Abe and Pan could synergistically and lethally affect PDAC survival and proliferation. Multiple cell-based assays, enzymatic activity experiments, and flow cytometry experiments were performed to determine the effects of Abe, Pan, and their combination on PDAC cells and human dermal fibroblasts. Western blotting was used to determine the expression of cell cycle, epigenetic, and apoptosis markers. The Abe-Pan combination exhibited excellent efficacy and produced synergistic effects, altering the expression of cell cycle proteins and epigenetic markers. Pan, alone and in combination with Abe, caused apoptosis in pancreatic cancer cells. Abe-Pan co-treatment showed relative safety in normal human dermal fibroblasts. Our novel combination treatment of Abe and Pan shows synergistic effects on PDAC cells. The combination induces apoptosis, shows relative safety, and merits further investigation due to its therapeutic potential in the treatment of PDAC.
RESUMO
BACKGROUND: Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS: Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of ß-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), ß-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION: The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Assuntos
Doenças Raras , Humanos , Índia/epidemiologia , Doenças Raras/genética , Estudos Retrospectivos , Masculino , Feminino , Centros de Atenção Terciária , Criança , Adulto , Adolescente , Pré-Escolar , Adulto Jovem , LactenteRESUMO
Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited. Nine types of combustible industrial wastes were analyzed: discarded containers (W1), plastic waste (W2), spent ion exchange resins from RO plants (W3), sludge from effluent treatment in soap plants (W4), glycerine foot from soap plants (W5), rock wool puff material (W6), fiber-reinforced plastic waste (W7), spent activated carbon (W8), and spent cartridges from reverse osmosis plants (W9). Physical characterization, proximate and ultimate analysis, heavy metal concentration evaluation, and thermogravimetric analysis were conducted to assess their properties, revealing high calorific values exceeding 2500 kcal/kg. Notably, W1 and W2 exhibited the highest calorific values (â¼10,870 kcal/kg), followed by W6 and W8 (â¼6000 kcal/kg) and W9 (â¼8727 kcal/kg). Safe heavy metal levels are safe, and high calorific values support the prospects of energy recovery and economic and environmental benefits, reducing landfill reliance and enhancing sustainable waste management.
Assuntos
Resíduos Perigosos , Resíduos Perigosos/análise , Gerenciamento de Resíduos/métodos , Resíduos Sólidos/análise , Indústria Química , Metais Pesados/análiseRESUMO
The biosynthesis of many bacterial siderophores employs a member of a family of ligases that have been defined as NRPS-independent siderophore (NIS) synthetases. These NIS synthetases use a molecule of ATP to produce an amide linkage between a carboxylate and an amine. Commonly used carboxylate substrates include citrate or α-ketoglutarate, or derivatives thereof, while the amines are often hydroxamate derivatives of lysine or ornithine, or their decarboxylated forms cadaverine and putrescine. Enzymes that employ three substrates to catalyze a reaction may proceed through alternate mechanisms. Some enzymes use sequential mechanisms in which all three substrates bind prior to any chemical steps. In such mechanisms, substrates can bind in a random, ordered, or mixed fashion. Alternately, other enzymes employ a ping-pong mechanism in which a chemical step occurs prior to the binding of all three substrates. Here we describe an enzyme assay that will distinguish among these different mechanisms for the NIS synthetase, using IucA, an enzyme involved in the production of aerobactin, as the model system.
Assuntos
Peptídeo Sintases , Sideróforos , Sideróforos/metabolismo , Sideróforos/química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Cinética , Especificidade por Substrato , Ensaios Enzimáticos/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ácidos Cetoglutáricos/metabolismo , Ligases/metabolismo , Ligases/químicaRESUMO
Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual ß-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for ß-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the ß-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.
Assuntos
Proteínas de Bactérias , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Domínio Catalítico , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Cristalografia por Raios X , Modelos MolecularesRESUMO
Snakebite envenoming and its resulting complications are serious threats to the health of vulnerable people living in rural areas of developing countries. The knowledge of the heterogeneity of symptoms associated with snakebite envenoming and their management strategies is vital to treat such life-threatening complications to save lives. Russell's viper envenomation induces a diverse range of clinical manifestations from commonly recognised haemotoxic and local effects to several rare conditions that are often not reported. The lack of awareness about these unusual manifestations can affect prompt diagnosis, appropriate therapeutic approaches, and positive outcomes for patients. Here, we report pulmonary thromboembolism that developed in three patients following Russell's viper envenomation and demonstrate their common clinical features and diagnostic and therapeutic approaches used. All patients showed clinical signs of local (oedema) and systemic (blood coagulation disturbances) envenomation, which were treated using polyvalent antivenom. They exhibited elevated heart rates, breathlessness, and reduced oxygen saturation, which are non-specific but core parameters in the diagnosis of pulmonary embolism. The recognition of pulmonary embolism was also achieved by an electrocardiogram, which showed sinus tachycardia and computed tomography and echocardiogram scans further confirmed this condition. Anti-coagulant treatment using low-molecular-weight heparin offered clinical benefits in these patients. In summary, this report reinforces the broad spectrum of previously unreported consequences of Russell's viper envenomation. The constant updating of healthcare professionals and the dissemination of major lessons learned in the clinical management of snakebite envenoming through scientific documentation and educational programs are necessary to mitigate the adverse impacts of venomous snakebites in vulnerable communities.
Assuntos
Antivenenos , Daboia , Embolia Pulmonar , Mordeduras de Serpentes , Mordeduras de Serpentes/complicações , Mordeduras de Serpentes/tratamento farmacológico , Embolia Pulmonar/etiologia , Embolia Pulmonar/tratamento farmacológico , Humanos , Animais , Masculino , Antivenenos/uso terapêutico , Venenos de Víboras/toxicidade , Adulto , Feminino , Pessoa de Meia-Idade , Anticoagulantes/uso terapêuticoRESUMO
Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain that catalyzes an unusual ß-lactam forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the ß-lactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The structure illustrates a constrained active site that orients the substrate properly for ß-lactam formation. In this regard, the structure is similar to the ß-lactone forming thioesterase domain responsible for the production of obafluorin. Analysis of the structure identifies features that are responsible for this four-membered ring closure and enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.
RESUMO
Regardless of the clinical response and improved patient survival observed following treatment with BRAFi like Vemurafenib (Vem), rapid development of resistance still remains as a major obstacle in melanoma therapy. In this context, we developed and characterized two acquired Vem-resistant melanoma cell lines, A375V and SK-MEL-28V, and an intrinsically Vem-resistant cell line, RPMI-7951. Altered morphology and growth rate of the resistant cell lines displayed spindle-shaped cells with filopodia formation and enhanced proliferation rate as compared to parental cells. Further in vitro characterization in 2D models confirmed the emergence of a resistant phenotype in melanoma cells. To mimic the in vivo tumor microenvironment, spheroids were developed for both parental and resistant cell lines to recognize materialization of invadopodia structures demonstrating elevated invasiveness and proliferation of resistant cells-based spheroids, especially A375V. Importantly, we validated A375V cell line in vivo to prove its tumorigenicity and drug resistance in tumor xenograft model. Taken together, our established clinically relevant Vem-resistant tumor model could be beneficial to elucidate drug resistance mechanisms, screen and identify novel anticancer therapies to overcome BRAFi resistance in melanoma.
Assuntos
Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Melanoma , Proteínas Proto-Oncogênicas B-raf , Vemurafenib , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Camundongos NusRESUMO
We thank the author for showing interest in our article [...].
Assuntos
Neurite Óptica , Toxinas Biológicas , Animais , Naja naja , BungarusRESUMO
BACKGROUND: Within primary care there exists a cohort of patients misdiagnosed with Chronic Obstructive Pulmonary Disease (COPD). Misdiagnosis can have a detrimental impact on healthcare finances and patient health and so understanding the factors leading to misdiagnosis is crucial in order to reduce misdiagnosis in the future. The objective of this study is to understand and explore the perceived causes of COPD misdiagnosis in primary care. METHODS: A sequential mixed methods study, quantifying prevalence and features of patients misdiagnosed with COPD in primary care followed by a qualitative analysis to explore perceived causes of misdiagnosis. Quantitative data was collected for 206 patients identified as misdiagnosed with COPD within the INTEGR COPD study (NCT03482700). Qualitative data collected from 21 healthcare professionals involved in providing COPD care and 8 misdiagnosed patients who were recruited using a maximum variation purposive sampling. RESULTS: Misinterpretation of spirometry results was the prevailing factor leading to patients initially being misdiagnosed with COPD, affecting 59% of misdiagnosed patients in this cohort. Of the 99 patients who were investigated for their underlying diagnosis; 41% had normal spirometry and 40% had asthma. Further investigation through qualitative methodology uncovered reluctance to challenge historical misdiagnoses and challenges in differential diagnosis as the underlying explanations for COPD misdiagnosis in this cohort. CONCLUSIONS: Patients historically diagnosed with COPD without spirometric evidence are at risk of remaining labelled and treated for COPD despite non-obstructive respiratory physiology, leading to a persistent cohort of patients misdiagnosed with COPD in primary care. The lack of spirometry services during and after the COVID19 pandemic in primary care risks adding to the cohort of misdiagnosed patients. Support from respiratory specialists can potentially help to reduce the prevalence of COPD misdiagnosis in primary care. TRIAL REGISTRATION: NCT03482700.
Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Projetos de Pesquisa , Erros de Diagnóstico , Atenção Primária à SaúdeRESUMO
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de VidaRESUMO
Molecularly woven materials with striking mechanical resilience, and 2D controlled topologies like textiles, fishing nets, and baskets are highly anticipated. Molecular weaving exclusively apprehended by the secondary interactions expanding to laterally grown 2D self-assemblies with retained crystalline arrangement is stimulating. The interlacing entails planar molecules screwed together to form 2D woven thin films. Here, secondary interactions led 2D interlaced molecularly woven material (2°MW) built by 1D helical threads of organic chromophores twisted together via end-to-end CH···O connections, held strongly at inter-crossing by multiple OH···N interactions to prevent slippage is presented. Whereas, 1D helical threads with face-to-face O-H···O connections sans interlacing led the non-woven material (2°NW). The polarity-driven directionality in 2°MW led the water-actuated epitaxial growth of 2D-sheets to lateral thin films restricted to nano-scale thickness. The molecularly woven thin film is self-healing, flexible, and mechanically resilient in nature, while maintaining the crystalline regularity is attributed to the supple secondary interactions (2°).
RESUMO
Local tissue damage following snakebite envenoming remains a poorly researched area. To develop better strategies to treat snakebites, it is critical to understand the mechanisms through which venom toxins induce envenomation effects including local tissue damage. Here, we demonstrate how the venoms of two medically important Indian snakes (Russell's viper and cobra) affect human skeletal muscle using a cultured human myoblast cell line. The data suggest that both venoms affect the viability of myoblasts. Russell's viper venom reduced the total number of cells, their migration, and the area of focal adhesions. It also suppressed myogenic differentiation and induced muscle atrophy. While cobra venom decreased the viability, it did not largely affect cell migration and focal adhesions. Cobra venom affected the formation of myotubes and induced atrophy. Cobra venom-induced atrophy could not be reversed by small molecule inhibitors such as varespladib (a phospholipase A2 inhibitor) and prinomastat (a metalloprotease inhibitor), and soluble activin type IIb receptor (a molecule used to promote regeneration of skeletal muscle), although the antivenom (raised against the Indian 'Big Four' snakes) has attenuated the effects. However, all these molecules rescued the myotubes from Russell's viper venom-induced atrophy. This study demonstrates key steps in the muscle regeneration process that are affected by both Indian Russell's viper and cobra venoms and offers insights into the potential causes of clinical features displayed in envenomed victims. Further research is required to investigate the molecular mechanisms of venom-induced myotoxicity under in vivo settings and develop better therapies for snakebite-induced muscle damage.