Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771532

RESUMO

Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.

2.
Proc Natl Acad Sci U S A ; 117(8): 4043-4052, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034097

RESUMO

Cancer immunotherapy has been the subject of extensive research, but highly effective and broadly applicable methods remain elusive. Moreover, a general approach to engender endogenous patient-specific cellular therapy, without the need for a priori knowledge of tumor antigen, ex vivo cellular manipulation, or cellular manufacture, could dramatically reduce costs and broaden accessibility. Here, we describe a biotechnology based on synthetic, biodegradable nanoparticles that can genetically reprogram cancer cells and their microenvironment in situ so that the cancer cells can act as tumor-associated antigen-presenting cells (tAPCs) by inducing coexpression of a costimulatory molecule (4-1BBL) and immunostimulatory cytokine (IL-12). In B16-F10 melanoma and MC38 colorectal carcinoma mouse models, reprogramming nanoparticles in combination with checkpoint blockade significantly reduced tumor growth over time and, in some cases, cleared the tumor, leading to long-term survivors that were then resistant to the formation of new tumors upon rechallenge at a distant site. In vitro and in vivo analyses confirmed that locally delivered tAPC-reprogramming nanoparticles led to a significant cell-mediated cytotoxic immune response with systemic effects. The systemic tumor-specific and cell-mediated immunotherapy response was achieved without requiring a priori knowledge of tumor-expressed antigens and reflects the translational potential of this nanomedicine.


Assuntos
Engenharia Genética/métodos , Fatores Imunológicos/uso terapêutico , Melanoma Experimental/genética , Melanoma Experimental/terapia , Animais , Antígenos de Neoplasias , Antineoplásicos/uso terapêutico , Feminino , Genes Reporter , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Nanomedicina , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Linfócitos T
3.
Oper Neurosurg (Hagerstown) ; 18(3): 316-320, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31214696

RESUMO

BACKGROUND: Sacrificing the superior petrosal vein (SPV) is controversial during a microvascular decompression (MVD). There have been multiple reports of complications including life-threatening brainstem infarction and cerebellar edema. OBJECTIVE: To analyze the potential for vascular complications when the SPV is sacrificed during an MVD. METHODS: Retrospective chart review was performed to identify all MVDs for trigeminal neuralgia and hemifacial spasm from 2007 to 2018 at 1 institution. Cases with ≥1 mo of follow-up were included and SPV sacrifice was noted. The primary outcome was complications related to SPV sacrifice including sinus thrombosis, cerebellar edema, and midbrain or pontine infarction. Imaging was used to confirm all potential vascular complications noted in medical records. Fisher's exact test and unpaired t-tests were used to compare between groups. RESULTS: A total of 732 MVD cases were identified and 592 met inclusion criteria with an average follow-up of 11.8 ± 16.4 mo and a male-to-female ratio of 1:2.2. The SPV was sacrificed in 217 cases and retained in 375 cases. No SPV-related vascular complications were found in this study. Two unrelated cases of vascular complications were identified and both were in the nonsacrificed group. One case involved cerebellar bleeding while the other was an ipsilateral transverse sinus thrombosis that was present preoperatively. CONCLUSION: In MVDs, there is no difference in the rate of vascular complications when the SPV is sacrificed compared to preserved. To best visualize a cranial nerve and optimize safe decompression, surgeons should feel free to sacrifice the SPV.


Assuntos
Veias Cerebrais , Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Neuralgia do Trigêmeo , Veias Cerebrais/cirurgia , Feminino , Espasmo Hemifacial/etiologia , Espasmo Hemifacial/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/cirurgia
4.
J Neurosurg ; 132(4): 1227-1233, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849763

RESUMO

OBJECTIVE: Trigeminal neuralgia (TN) is a neuropathic pain disorder characterized by severe, lancinating facial pain that is commonly treated with neuropathic medication, percutaneous rhizotomy, and/or microvascular decompression (MVD). Patients who are not found to have distinct arterial compression during MVD present a management challenge. In 2013, the authors reported on a small case series of such patients in whom glycerin was injected intraoperatively into the cisternal segment of the trigeminal nerve. The objective of the authors' present study was to report their updated experience with this technique to further validate this novel approach. METHODS: The authors performed a retrospective analysis of data obtained in patients in whom glycerin was directly injected into the inferior third of the cisternal portion of the trigeminal nerve. Seventy-four patients, including 14 patients from the authors' prior study, were identified, and demographic information, intraoperative findings, postoperative course, and complications were recorded. Fisher's exact test, unpaired t-tests, and Kaplan-Meier survival curves using Mantel log-rank test were used to compare the 74 patients with a cohort of 476 patients who received standard MVD by the same surgeon. RESULTS: The 74 patients who underwent MVD and glycerin injection had an average follow-up of 19.1 ± 18.0 months, and the male/female ratio was 1:2.9. In 33 patients (44.6%), a previous intervention for TN had failed. On average, patients had an improvement in the Barrow Neurological Institute Pain Intensity score from 4.1 ± 0.4 before surgery to 2.1 ± 1.2 after surgery. Pain improvement after the surgery was documented in 95.9% of patients. Thirteen patients (17.6%) developed burning pain following surgery. Five patients developed complications (6.7%), including incisional infection, facial palsy, CSF leak, and hearing deficit, all of which were minor. CONCLUSIONS: Intraoperative injection of glycerin into the trigeminal nerve is a generally safe and potentially effective treatment for TN when no distinct site of arterial compression is identified during surgery or when decompression of the nerve is deemed to be inadequate.

5.
Int J Nanomedicine ; 14: 10047-10060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920302

RESUMO

BACKGROUND: Nanomedicine can improve traditional therapies by enhancing the controlled release of drugs at targeted tissues in the body. However, there still exists disease- and therapy-specific barriers that limit the efficacy of such treatments. A major challenge in developing effective therapies for one of the most aggressive brain tumors, glioblastoma (GBM), is affecting brain cancer cells while avoiding damage to the surrounding healthy brain parenchyma. Here, we developed poly(ethylene glycol) (PEG)-poly(beta-amino ester) (PBAE) (PEG-PBAE)-based micelles encapsulating verteporfin (VP) to increase tumor-specific targeting. METHODS: Biodegradable, pH-sensitive micelles of different shapes were synthesized via nanoprecipitation using two different triblock PEG-PBAE-PEG copolymers varying in their relative hydrophobicity. The anti-tumor efficacy of verteporfin loaded in these anisotropic and spherical micelles was evaluated in vitro using patient-derived primary GBM cells. RESULTS: For anisotropic micelles, uptake efficiency was ~100% in GBM cells (GBM1A and JHGBM612) while only 46% in normal human astrocytes (NHA) at 15.6 nM VP (p ≤ 0.0001). Cell killing of GBM1A and JHGBM612 vs NHA was 52% and 77% vs 29%, respectively, at 24 hrs post-treatment of 125 nM VP-encapsulated in anisotropic micelles (p ≤ 0.0001), demonstrating the tumor cell-specific selectivity of VP. Moreover, anisotropic micelles showed an approximately fivefold longer half-life in blood circulation than the analogous spherical micelles in a GBM xenograft model in mice. In this model, micelle accumulation to tumors was significantly greater for anisotropic micelle-treated mice compared to spherical micelle-treated mice at both 8 hrs (~1.8-fold greater, p ≤ 0.001) and 24 hrs (~2.1-fold greater, p ≤ 0.0001). CONCLUSION: Overall, this work highlights the promise of a biodegradable anisotropic micelle system to overcome multiple drug delivery challenges and enhance efficacy and safety for the treatment of brain cancer.


Assuntos
Neoplasias Encefálicas/patologia , Micelas , Polímeros/química , Verteporfina/farmacologia , Verteporfina/farmacocinética , Animais , Anisotropia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos Nus , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polímeros/síntese química , Solubilidade , Distribuição Tecidual/efeitos dos fármacos , Verteporfina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA