Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
3.
Nat Commun ; 15(1): 2431, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503753

RESUMO

Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 15(1): 2432, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503735

RESUMO

Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.


Assuntos
Peptidil Transferases , Peptidil Transferases/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326618

RESUMO

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Assuntos
Exorribonucleases , Proteínas Ribossômicas , Ribossomos , Exorribonucleases/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Cinética , Sítios de Ligação
6.
Nucleic Acids Res ; 52(7): 4021-4036, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38324474

RESUMO

Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.


Assuntos
Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , Saccharomyces cerevisiae , Biossíntese de Proteínas/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Códon/genética
7.
Nat Struct Mol Biol ; 30(9): 1380-1392, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550453

RESUMO

The ribosome is a major target for clinically used antibiotics, but multidrug resistant pathogenic bacteria are making our current arsenal of antimicrobials obsolete. Here we present cryo-electron-microscopy structures of 17 distinct compounds from six different antibiotic classes bound to the bacterial ribosome at resolutions ranging from 1.6 to 2.2 Å. The improved resolution enables a precise description of antibiotic-ribosome interactions, encompassing solvent networks that mediate multiple additional interactions between the drugs and their target. Our results reveal a high structural conservation in the binding mode between antibiotics with the same scaffold, including ordered water molecules. Water molecules are visualized within the antibiotic binding sites that are preordered, become ordered in the presence of the drug and that are physically displaced on drug binding. Insight into RNA-ligand interactions will facilitate development of new antimicrobial agents, as well as other RNA-targeting therapies.


Assuntos
Antibacterianos , Ribossomos , Antibacterianos/farmacologia , Antibacterianos/química , Ribossomos/metabolismo , Bactérias/metabolismo , Sítios de Ligação , RNA/metabolismo
8.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36951104

RESUMO

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Genes Bacterianos , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/química , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Nucleosídeos/química , Nucleosídeos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Clostridium/efeitos dos fármacos , Clostridium/genética , Microscopia Crioeletrônica
9.
Mol Cell ; 83(1): 9-11, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608672

RESUMO

Wang et al. (2022)1 employ real-time single-molecule fluorescence spectroscopy to monitor eukaryotic translation initiation events, revealing that, while mRNA engagement by ribosomal 43S subunits is slow, the subsequent mRNA scanning process is rapid- ∼10 times faster than translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon de Iniciação/genética , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Iniciação Traducional da Cadeia Peptídica
10.
Mol Cell ; 81(1): 104-114.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33259811

RESUMO

Aborted translation produces large ribosomal subunits obstructed with tRNA-linked nascent chains, which are substrates of ribosome-associated quality control (RQC). Bacterial RqcH, a widely conserved RQC factor, senses the obstruction and recruits tRNAAla(UGC) to modify nascent-chain C termini with a polyalanine degron. However, how RqcH and its eukaryotic homologs (Rqc2 and NEMF), despite their relatively simple architecture, synthesize such C-terminal tails in the absence of a small ribosomal subunit and mRNA has remained unknown. Here, we present cryoelectron microscopy (cryo-EM) structures of Bacillus subtilis RQC complexes representing different Ala tail synthesis steps. The structures explain how tRNAAla is selected via anticodon reading during recruitment to the A-site and uncover striking hinge-like movements in RqcH leading tRNAAla into a hybrid A/P-state associated with peptidyl-transfer. Finally, we provide structural, biochemical, and molecular genetic evidence identifying the Hsp15 homolog (encoded by rqcP) as a novel RQC component that completes the cycle by stabilizing the P-site tRNA conformation. Ala tailing thus follows mechanistic principles surprisingly similar to canonical translation elongation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA Bacteriano/metabolismo , RNA de Transferência de Alanina/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , RNA Bacteriano/genética , RNA de Transferência de Alanina/genética
11.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266193

RESUMO

The ribosome assembly factor Nsa2 is part of the Rea1-Rsa4-Nsa2 interconnected relay on nuclear pre-60S particles that is essential for 60S ribosome biogenesis. Cryo-EM structures depict Nsa2 docked via its C-terminal ß-barrel domain to nuclear pre-60S particles, whereas the extended N-terminus, consisting of three α-helical segments, meanders between various 25S rRNA helices with the extreme N-terminus in close vicinity to the Nog1 GTPase center. Here, we tested whether this unappreciated proximity between Nsa2 and Nog1 is of functional importance. Our findings demonstrate that a conservative mutation, Nsa2 Q3N, abolished cell growth and impaired 60S biogenesis. Subsequent genetic and biochemical analyses verified that the Nsa2 N-terminus is required to target Nsa2 to early pre-60S particles. However, overexpression of the Nsa2 N-terminus abolished cytoplasmic recycling of the Nog1 GTPase, and both Nog1 and the Nsa2-N (1-58) construct, but not the respective Nsa2-N (1-58) Q3N mutant, were found arrested on late cytoplasmic pre-60S particles. These findings point to specific roles of the different Nsa2 domains for 60S ribosome biogenesis.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Análise Mutacional de DNA , Proteínas de Ligação ao GTP/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155236

RESUMO

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Assuntos
Alanina/metabolismo , Bacillus subtilis/metabolismo , Células Procarióticas/metabolismo , Proteólise , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
J Cell Biol ; 207(4): 481-98, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404745

RESUMO

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a "distribution box," transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


Assuntos
RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA