Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Horiz ; 9(12): 2949-2975, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36239257

RESUMO

Integration of several functionalities into one isolated electrochemical body is necessary to realize compact and tiny smart electronics. Recently, two different technologies, electrochromic (EC) materials and energy storage, were combined to create a single system that supports and drives both functions simultaneously. In EC energy storage devices, the characteristic feature of EC materials, their optical modulation depending on the applied voltage, is used to visually identify the stored energy level in real time. Moreover, combining energy-harvesting and EC storage systems by sharing one electrode facilitates the realization of further compact multifunction systems. In this minireview, we highlight recent groundbreaking achievements in EC multifunction systems where the stored energy levels can be visualized using the color of the device.

2.
Traffic ; 23(12): 558-567, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224049

RESUMO

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Borrelia burgdorferi/metabolismo , Ligantes , Doença de Lyme/genética , Doença de Lyme/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fagossomos/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas rab de Ligação ao GTP , Animais , Camundongos
3.
ACS Chem Neurosci ; 13(11): 1627-1637, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561419

RESUMO

Raman microspectroscopy is a vibrational spectroscopy technique used for investigating molecular fingerprints of a wide range of liquid or solid samples. The technique can be efficiently utilized to understand the virus-mediated cellular changes and could provide valuable insights into specific biomolecular alterations. The Epstein Barr virus (EBV) has been associated with various types of cancers as well as neurodegenerative diseases. However, EBV-mediated neurological ailments are yet underexplored in terms of biomolecular changes in neuronal and glial cells (astrocytes and microglia). In continuation of our earlier exploration of EBV-influenced glial cells, we tried to decipher biomolecular changes in EBV-infected neuronal cells using Raman microspectroscopy. Additionally, we compared the consecutive biomolecular changes observed in neuronal cells with both the glial cells. We observed that EBV infection gets differentially regulated in the neuronal cells, astrocytes, and microglia. The viral entry and initiation of infection-mediated cellular modulation could start as soon as 2 h post infection but may regulate a distinct biomolecular milieu in different time intervals. Similar to the early timespan, the 24-36 h interval could also be important for EBV to manipulate neuronal as well as glial cells as depicted from elevated biomolecular activities. At these time intervals, some common biomolecules such as proline, glucose, lactic acid, nucleotides, or cholesterol were observed in the cells. However, at these time intervals, some distinct biomolecules were also observed in each cell, such as collagen, lipid, and protein stretches in the neuronal nucleus (2-4 h); tyrosine and RNA in the astrocyte nucleus (2-4 h nucleus); and fatty acids in the microglia nucleus (24-36 h). The observed biomolecular entities could ultimately play pivotal roles in the viral usurpation of cells. We also provided insights into whether these biomolecular changes can be correlated to each other and mediate virus-associated manifestations which can be linked to neurological complications. Our study aids in the understanding of EBV-mediated biomolecular changes in the various compartments of the central nervous system.


Assuntos
Infecções por Vírus Epstein-Barr , Núcleo Celular/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Neuroglia/metabolismo
4.
Anal Chem ; 94(3): 1510-1514, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34994546

RESUMO

The Fermi energy is known to be dependent on doping and temperature, but finding its value and corresponding thermal Fermi shift experimentally is not only difficult but is virtually impossible if one attempts their simultaneous determination. We report that temperature dependent Raman spectromicroscopy solves the purpose easily and proves to be a powerful technique to determine the position and temperature associated Fermi shift in an extrinsic semiconductor as demonstrated for silicon in the present study. The typical asymmetrically broadened Raman spectral line-shape from sufficiently doped n- and p-type silicon contains the information about the Fermi level position through its known association with the Fano coupling strength. Thus, Raman line-shape parameters, the terms quantify the Fano-coupling, have been used as experimental observables to reveal the value of the Fermi energy and consequent thermal Fermi shift. A simple formula has been developed based on existing established theoretical frameworks that can be used to calculate the position of the Fermi level. The proposed Raman spectroscopy-based formulation applies well for n- and p-type silicon. The calculated Fermi level position and its temperature dependent variation are consistent with the existing reports.

5.
ACS Mater Au ; 2(3): 293-300, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36855378

RESUMO

A dual purpose solid state electrochromic diode has been fabricated using polythiophene (P3HT) and ethyl Viologen (EV), predoped with multiwalled carbon nanotubes (MWCNTs) and MoS2. The device has been designed by considering two important aspects, first, the complementary redox activity of P3HT and EV and second, the electron holding properties of MoS2 and MWCNTs. The latter is found to enhance the electrochromic performance of the solid state device. On the other hand, the complementary redox nature gives the asymmetric diodic I-V characteristic to the device which has been exploited to use the electrochromic device for rectification application. The MoS2 nanoflower and MWCNTs are synthesized by one-step hydrothermal and pyrolysis techniques and well characterized by scanning electron microscopy (SEM), X-ray analysis (XRD), and Raman spectroscopy. Electrochromic properties of the device have been studied in detail to reveal an improvement in device performance in terms of faster speed and high coloration efficiency and color contrast. In situ bias-dependent Raman spectroscopy has been performed to understand the operation mechanism of the electrochromic diode which reveals (bi-)polaron formation as a result of dynamic doping eventually leading to color change. A half-wave rectifier has been realized from the electrochromic diode which rectifies an AC voltage of frequency 1 Hz or less making it suitable for low frequency operation. The study opens a new possibility to design and fabricate multipurpose frequency selective electrochromic rectifiers.

6.
ACS Phys Chem Au ; 2(5): 417-422, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855687

RESUMO

Excitation wavelength-dependent Raman spectroscopy has been carried out to study electron-phonon interaction (Fano resonance) in multi-layered bulk 2H-MoS2 nano-flakes. The electron-phonon coupling is proposed to be caused due to interaction between energy of an excitonic quasi-electronic continuum and the discrete one phonon, first-order Raman modes of MoS2. It is proposed that an asymmetrically broadened Raman line shape obtained by 633 nm laser excitation is due to electron-phonon interaction whose electronic continuum is provided by the well-known A and B excitons. Typical wavelength-dependent Raman line shape has been observed, which validates and quantifies the Fano interaction present in the samples. The experimentally obtained Raman scattering data show very good agreement with the theoretical Fano-Raman line-shape functions and help in estimating the coupling strength. Values of the electron-phonon interaction parameter obtained, through line-shape fitting, for the two excitation wavelengths have been compared and shown to have generic Fano-type dependence on the excitation wavelength.

7.
ACS Chem Neurosci ; 12(20): 3957-3967, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609141

RESUMO

The neurotropic potential of the Epstein-Barr virus (EBV) was demonstrated quite recently; however, the mechanistic details are yet to be explored. Therefore, the effects of EBV infection in the neural milieu remain underexplored. Previous reports have suggested the potential role of virus-derived peptides in seeding the amyloid-ß aggregation cascade, which lies at the center of Alzheimer's disease (AD) pathophysiology. However, no such study has been undertaken to explore the role of EBV peptides in AD. In our research, ∼100 EBV proteins were analyzed for their aggregation proclivity in silico using bioinformatic tools, followed by the prediction of 20S proteasomal cleavage sites using online algorithms NetChop ver. 3.1 and Pcleavage, thereby mimicking the cellular proteasomal cleavage activity generating short antigenic peptides of viral origin. Our study reports a high aggregate-forming tendency of a 12-amino-acid-long (146SYKHVFLSAFVY157) peptide derived from EBV glycoprotein M (EBV-gM). The in vitro analysis of aggregate formation done using Congo red and Thioflavin-S assays demonstrated dose- and time-dependent kinetics. Thereafter, Raman spectroscopy was used to validate the formation of secondary structures (α helix, ß sheets) in the aggregates. Additionally, cytotoxicity assay revealed that even a low concentration of these aggregates has a lethal effect on neuroblastoma cells. The findings of this study provide insights into the mechanistic role of EBV in AD and open up new avenues to explore in the future.


Assuntos
Doença de Alzheimer , Infecções por Vírus Epstein-Barr , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Herpesvirus Humano 4 , Humanos
8.
J Phys Chem Lett ; 12(8): 2044-2051, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606540

RESUMO

Quantum size effects on interferons (electron-phonon bound states), confined in fractal silicon (Si) nanostructures (NSs), have been studied by using Raman spectromicroscopy. A paradoxical size dependence of Fano parameters, estimated from Raman spectra, has been observed as a consequence of longitudinal variation of nanocrystallite size along the Si wires leading to local variations in the dopants' density which actually starts governing the Fano coupling, thus liberating the interferons to exhibit the typical quantum size effect. These interferons are more dominated by the effective reduction in dopants' density rather than the quantum confinement effect. Detailed experimental and theoretical Raman line shape analyses have been performed to solve the paradox by establishing that the increasing size effect actually is accompanied by receding Fano coupling due to the weakened electronic continuum. The latter has been validated by observing a consequent variation in the Raman signal from dopants which was found to be consistent with the above conclusion.

9.
ACS Appl Bio Mater ; 4(8): 5981-5986, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006870

RESUMO

Optical and electrochemical properties from Cassia and Giloy leaves' raw extract have been studied, and they show similar properties as UV absorber but different emission properties, under UV excitation, even though they appear the same in natural light. Giloy and Cassia extracts show red and green luminescence, respectively, under UV excitation. Like the appearance, their redox properties are also similar, which shows that both can act as antioxidants. Raman spectroscopy and excitation wavelength dependent photoluminescence data have been compared. The difference in relative emission intensities have been explained based on the presence of corresponding color centers in different ratios in the two leaves.


Assuntos
Cassia , Senna , Tinospora , Cassia/química , Luminescência , Extratos Vegetais/análise , Folhas de Planta/química , Tinospora/química
10.
ACS Omega ; 5(45): 29547-29560, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225186

RESUMO

Raman spectroscopy can be used as a tool to study virus entry and pathogen-driven manipulation of the host efficiently. To date, Epstein-Barr virus (EBV) entry and altered biochemistry of the glial cell upon infection are elusive. In this study, we detected biomolecular changes in human glial cells, namely, HMC-3 (microglia) and U-87 MG (astrocytes), at two variable cellular locations (nucleus and periphery) by Raman spectroscopy post-EBV infection at different time points. Two possible phenomena, one attributed to the response of the cell to viral attachment and invasion and the other involved in duplication of the virus followed by egress from the host cell, are investigated. These changes corresponded to unique Raman spectra associated with specific biomolecules in the infected and the uninfected cells. The Raman signals from the nucleus and periphery of the cell also varied, indicating differential biochemistry and signaling processes involved in infection progression at these locations. Molecules such as cholesterol, glucose, hyaluronan, phenylalanine, phosphoinositide, etc. are associated with the alterations in the cellular biochemical homeostasis. These molecules are mainly responsible for cellular processes such as lipid transport, cell proliferation, differentiation, and apoptosis in the cells. Raman signatures of these molecules at distinct time points of infection indicated their periodic involvement, depending on the stage of virus infection. Therefore, it is possible to discern the details of variability in EBV infection progression in glial cells at the biomolecular level using time-dependent in vitro Raman scattering.

11.
Appl Biochem Biotechnol ; 192(3): 965-978, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32617842

RESUMO

Indian mustard (Brassica juncea L.) is an important edible oilseed crop in India. Low productivity is the major concern which is adversely affected by biotic stresses. Alternaria blight (Alternaria brassicae) is one among major diseases that has no resistant cultivar until now. Keeping in view, an experiment was conducted for isolation of Alternaria blight-tolerant mutants in Indian mustard using gamma radiation and EMS mutagens during four consecutive years in Rabi (winter season). Furthermore, the morphologically and economically superior mutants of Brassica juncea were screened artificially at cotyledonary and adult stage against Alternaria blight. Tolerance to Alternaria blight is observed in DRMR-M-163 (11.7%), DRMR-M-158 (13.1%), DRMR-M-174 (13.8%) and DRMR-M-177 (18.6%) with minimum conidia in infected cotyledons. Mutant DRMR-M-178 (19.8%) had the highest radical scavenging activity, while DRMR-M-162 (104.9 mg/g AAE), DRMR-M-169 (96.9) and DRMR-M-161 (96.9) had higher antioxidant capacity that appears to act as defence to pathogen. DRMR-M-168 (8.4%), DRMR-M-173 (8.3), DRMR-M-171 (7.9), DRMR-M-165 (7.4), DRMR-M-175 (7.2) and DRMR-M-172 (6.9) had higher phenol content which may be responsive for resistance, although DRMR-M-161 (192.7 mg/g), DRMR-M-163 (187.7 mg/g), DRMR-M-164 (132.7 mg/g), DRMR-M-167 (149.3 mg/g), DRMR-M-173 (196.0 mg/g) and DRMR-M-178 (192.7 mg/g) mutants are found to contain low levels of total soluble sugar compared with susceptible Rohini (379.3). Based on biochemical parameter's similarity, mutants are grouped in 4 major clusters. Cluster 4 contained significantly different mutant DRMR-M-172. Relative expression of mitogen-activated protein kinase 3 (MAPK3) gene was found highest in DRMR-M-177, DRMR-M-174, DRMR-M-175, DRMR-M-178, DRMR-M-170, DRMR-M-176, DRMR-M-172 and DRMR-M-173 which resulted the better response to AB stress. Based on biochemical analysis, realtime PCR and cluster analysis, DRMR-M-172 mutant appears more tolerant to Alternaria. DRMR-M-178, DRMR-M-167 and DRMR-M-177 mutants seem tolerant and could be utilized for further breeding programme.


Assuntos
Alternaria/fisiologia , Brassica/microbiologia , Brassica/fisiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Brassica/metabolismo , Mutação , Fenóis/metabolismo , Solubilidade , Açúcares/química , Açúcares/metabolismo
12.
Anal Chem ; 92(8): 6088-6093, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32227931

RESUMO

Solid-state electrochromic devices often need appropriate characterization to establish the real working mechanism for optimization and diagnosis. Raman mapping has been used here to track "dynamic doping", an important concept in organic electronics and in polythiophene-based solid-state electrochromic devices to understand and validate the mechanism of bias-induced redox-driven color switching. The proposed method demonstrates the live formation and movement of polarons which is best suited for in situ solid-state Raman spectroelectrochemistry. A 2-fold approach has been adopted here for this (1) by fabricating a working device in cross bar geometry followed by in situ spectroscopy to demonstrate the device functioning and (2) by carrying out Raman mapping from a device in custom-designed thin-film-transistor-like geometry to track and actually "see" the mechanism spectroscopically.

13.
Anal Sci Adv ; 1(2): 89-96, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38715903

RESUMO

Expanding the capabilities of Raman scattering as an analytical tool for engineering applications can optimize the technological output immensely. Understanding the homogeneity of any blended mix is one such significant parameter in the family of composite building construction materials that needs an appropriate tool for its measurement. Raman spectromicroscopy has been established here for the purpose of studying the chemical homogeneity at the microscopic scale of a dry binary blend used in the building constructions as an example. In this study, two waste stone powdered materials, obtained from western Indian stone fields, have been characterized in their respective unmixed forms using Raman spectroscopy up to an extent so that the same can be developed as a microscopic tool to clearly "see" the chemical homogeneity of a mixture. A step-by-step study has been carried out by first, simply making a physically separated and identifiable boundary of the two materials followed by obtaining a Raman line image. The Raman line map could clearly identify the boundary, which otherwise was not possible to appreciate visibly. The same recipe has been extended to study the homogeneity of a binary mixture (blended in 1:1 ratio), using a Raman area map. The novelty of the work lies in the advancement in the analytical tool's family to see the chemical homogeneity of building construction materials at the microscopic level. Chemical imaging using Raman spectroscopy has been demonstrated as a simple tool to understand the homogeneity of the dry binary blend, which was not possible by other simple techniques. Using Raman area mapping proves to be a quick, valuable, and effective tool for measuring the homogeneity of the blended mixes at the microscopic scale and important for application in building construction materials.

14.
J Phys Chem A ; 123(16): 3607-3614, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30990322

RESUMO

A new model has been reported here to estimate the mean size and size distribution in nanostructured materials by utilizing a simple and economic diffuse reflectance spectroscopy through spectral line-shape analysis. In the proposed model, a theoretical line shape has been derived by taking into account a size distribution function, which represents a variation in absorption coefficient as a function of size, which in turn depends on the band gap and thus on the excitation photon energy. A fitting of the experimental absorption spectra with the derived line-shape function yields the mean crystallite size and size distribution. The size and size distribution have been successfully estimated from two different silicon nanostructured samples, prepared by metal induced etching. The model has been validated by comparing the estimated values with the sizes estimated using Raman spectroscopy, which is a well-known technique. The two results are not only consistent with each other but are also found to be consistent with the electron microscopy's results, revealing that a technique as simple and as economic as diffuse reflectance spectroscopy can be used to estimate size distribution. In addition, the proposed model can also be used to investigate the homogeneity in the size distribution in a nanostructured sample.

15.
Anal Chem ; 90(13): 8123-8129, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29889501

RESUMO

Quantification of the short-range order in amorphous silicon has been formulized using Raman scattering by taking into account established frameworks for studying the spectral line-shape and size dependent Raman peak shift. A theoretical line-shape function has been proposed for representing the observed Raman scattering spectrum from amorphous-Si-based on modified phonon confinement model framework. While analyzing modified phonon confinement model, the term "confinement size" used in the context of nanocrystalline Si was found analogous to the short-range order distance in a-Si thus enabling one to quantify the same using Raman scattering. Additionally, an empirical formula has been proposed using bond polarizability model for estimating the short-range order making one capable to quantify the distance of short-range order by looking at the Raman peak position alone. Both the proposals have been validated using three different data sets reported by three different research groups from a-Si samples prepared by three different methods making the analysis universal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA